

Report No. 3766

MEMORANDUM

То:	Executive Committee of Faculty Council (March 26, 2024) Faculty Council (April 15, 2024)
From:	Professor Lisa Romkey Chair, Engineering Graduate Education Committee (EGEC)
Date:	March 12, 2024
Re:	Engineering Graduate Education Committee Update

REPORT CLASSIFICATION

This is a routine or minor policy matter that has been approved by the Engineering Graduate Education Committee (EGEC). It will be considered by the Executive Committee for approval and forwarding to Faculty Council for information.

NEW COURSES APPROVED

Thermal Phenomena, Performance and Management of Electric Vehicles:
This course describes the thermal phenomena in Electric Vehicles (EVs),
including the primary cooling/heating circuits associated with the power
train, cabin, and battery. The major focus is on thermal performance and
thermal management of batteries, power electronics and electric motors,
and it also includes thermal issues related to cabin electronic systems.
Emphasis is on Lithium-ion batteries (LIB), which are expected to continue
to be the most widely used battery for EVs in the next decade. This course
will cover LIB cells and their fundamentals; principles of operation;
electrochemical and heat transfer formulation, modelling and simulation;
thermal-related effects on LIB performance and longevity, including aging,
degradation, safety, and thermal runaway; thermal modelling of EV
system- and component-level, LIB, electric drivetrain, cabin, and fast
charger. Students in this course are expected to have a basic
understanding of electrochemistry terminologies and undergraduate-level
fundamental knowledge of fluid mechanics, thermodynamics, heat
transfer and numerical methods.

AED1404	Associates Materiales This course focuses on materials used under
AER1404	Aerospace Materials : This course focuses on materials used under extreme conditions for aerospace applications, mainly high-temperature
	materials (e.g. Ni-based superalloys), coating systems (especially
	thermal and environmental barrier coating systems), and lightweight
	materials (e.g. Al, Ti, and composites). These material systems for extreme
	conditions are compared to standard materials, which are already familiar
	to the students. The focus will be on materials for turbines, (reusable)
	rocket engines, and structural components for aerospace structures. For
	these applications, material selection is discussed, manufacturing routines
	are highlighted, and the understanding of fundamental material behaviour
	is deepened. In detail, creep mechanisms, diffusion, oxidation, high-
	temperature corrosion, failure mechanisms, and thermal stability of the
	microstructure are covered in this course.
CIV1323	Pathways to Net-Zero Greenhouse Gas Emissions: Faced with climate
	change and the necessity to reduce and ultimately eliminate human-
	generated GHG emissions, society must now drive the action mandated via
	the net-zero policies enacted by governments worldwide. This overarching
	goal can however only be implemented via individual sector policies that
	reflect the technical, economic and political realities of the day. Further,
	such actions can only take place and be effective once the impacted
	natural climate and biogenic systems are understood. This course will
	provide an overview of climate science before examining the technical,
	economic and political realities of potential climate change interventions
	across six major climate sectors. These range from energy to industry to
	farming and forestry. Students will apply this knowledge both via
	individual study efforts and by a group project tasked with
	setting a pathway to net zero for a chosen country.
CIV1231	Indoor Air Quality – Moisture, Microbes and Materials: We spend most of
0171201	our time indoors exposed to a variety of organic and inorganic compounds.
	Accounting for and minimizing potentially harmful exposures is critical to
	indoor air quality. Through this course, students will gain new knowledge
	in the field of indoor air quality and develop skills to engineer solutions to
	create healthy, sustainable and equitable indoor environments. Focus will
	be given to moisture transport through materials, water activity, impact of
	moisture on organic indoor contaminants such as bioaerosols, and
	methodologies to prevent, remediate and monitor indoor mould growth.
	Further, this course will investigate tools, such as next-generation
	sequencing and bioinformatics, used to characterize indoor microbiomes
	and bioaerosols. Interest will also be given to issues in indoor
	environmental quality specifically in Indigenous housing as well as low-
	socioeconomic communities in Canada. Through a course project, students
	will engineer a solution using resources and skills developed throughout
	the course for a particular issue of interest in indoor air quality.

RECOMMENDATION FOR FACULTY COUNCIL

For information.