

Report No. 3679

#### MEMORANDUM

| То:   | Executive Committee of Faculty Council (February 2, 2021)<br>Faculty Council (February 24, 2021) |
|-------|--------------------------------------------------------------------------------------------------|
| From: | Professor Julie Audet<br>Chair, Engineering Graduate Education Committee (EGEC)                  |
| Date: | January 25, 2021                                                                                 |
| Re:   | Addition of an Extended Full-time Option to the MEng in Biomedical<br>Engineering                |

#### **REPORT CLASSIFICATION**

This is a major policy matter that will be considered by the Executive Committee for endorsing and forwarding to Faculty Council for vote as a regular motion (requiring a simple majority of members present and voting to carry).

#### PROPOSED

See the attached major modification proposal to add an Extended Full-Time option to the MEng in Biomedical Engineering program.

#### **RECOMMENDATION FOR FACULTY COUNCIL**

THAT an Extended Full-Time option be added to the Master of Engineering (MEng) in Biomedical Engineering, as described in Report 3679.

# University of Toronto Major Modification Proposal

## Significant Modifications to Existing Graduate and Undergraduate Programs

| Program being modified:      | Master of Engineering (MEng) in Biomedical Engineering      |
|------------------------------|-------------------------------------------------------------|
| Proposed major modification: | Addition of an Extended Full-Time option                    |
|                              | Reduction in credits earned for BME1899/1898Y from 1.5      |
|                              | FCEs to 1.0 FCE and addition of 0.5 FCE elective course (no |
|                              | change in the total FCE requirement for the program)        |
| Department/unit:             | Institute of Biomedical Engineering (BME)                   |
| Faculty/academic division:   | Faculty of Applied Science and Engineering                  |
| Dean's Office contact:       | Dr. Julie Audet, Vice-Dean, Graduate Studies                |
| Proponent:                   | Dr. Warren Chan, Director, IBME                             |
| Version date:                | February 4, 2021                                            |

# 1 Summary

We propose adding an Extended Full-Time (EFT) option to the MEng program at the Institute of Biomedical Engineering (BME). Students currently complete the MEng program in one year; the addition of an EFT option will allow them to complete the same course requirements over a period of two years, or six sessions. We further propose to decrease the FCE requirement for the practicum component (BME1899/8Y) from 1.5 FCEs to 1.0 FCE. MEng students will be required to take an additional 0.5 FCE over the course of their program, as the total number of required credits will remain unchanged at 5.0 FCEs total. This 0.5 FCE can be either biomedical engineering, commercialization and entrepreneurship, or any graduate-level course of interest to the student.

## 2 Effective Date

Extended Full Time Option: September 2021. Credit Reduction for BME1899/8Y: September 2021.

## **3 Academic Rationale**

**Extended Full Time Option (EFT):** We have received feedback from many of our MEng students that an EFT option would be beneficial. This option will enable them to divide course work between a maximum of 6 sessions, providing greater flexibility for course scheduling. The work integrated learning component of the program is typically taken during the summer term of the third session, and the EFT option will allow students additional time to seek out and secure industry internships. An EFT option will also give many of our international students more time to complete the MEng program requirements as well as additional time to settle into a new country, and in some cases, a different academic environment.

We are seeing increased interest in the MEng program from mature students and industry professionals who wish to pursue their studies and upgrade their skills while continuing their employment. Greater scheduling flexibility will be particularly beneficial to them. Historically, mature students who pursue an MEng after a period of industry employment do well in the program and BME would like to continue to attract these entrepreneurs and engineering professionals as the program grows.

This change will also align BME with other Faculty of Applied Science and Engineering (FASE) institutes and departments (ChemEng, CIV/MIN, ECE, UTIAS, MIE and MSE) that offer EFT options for their MEng students, including the EFT fee structure and maximum course loads per session and per year (as mandated by SGS), as well as restrictions relevant to transfers between FT and EFT options.

Credit Reduction for BME1899/8Y: BME1899/BME1898Y, Practical Experience in Applied Research, is a required work-integrated learning component of the BME MEng program. BME1899Y is taken in one session by students completing a full-time practicum, while BME1898Y can be taken by students over three sessions while completing a part-time practicum. A sister work-integrated learning course, BME4444Y, Practical Experience in Clinical Engineering, is a required work-integrated learning component of the BME Master of Health Science (MHSc) program. In both BME1899/8Y and BME4444Y, students complete 12 to 16 weeks in an industrial, hospital or academic setting to gain practical experience. Students currently earn 1.5 FCEs for BME1899/8Y and 1.0 FCE for BME4444Y. Lowering BME1899Y to 1.0 FCE will align these courses, and will align BME1899/8Y with CEM1000Y, the summer practicum course in Civil and Mineral Engineering's MEng CEM program which is also weighed 1.0 FCE. Both courses require similar time commitments, have the same learning objectives, and have similar assignments. Currently, BME MEng students complete seven 0.5 FCE half courses plus BME1899Y. Under the proposed structure, students will take eight 0.5 FCE half courses and BME1899Y. The program requirements will remain 5.0 FCEs total, so students will have to take one additional half course to meet these requirements. To be flexible, we will allow students to take a course from any of our current categories since the learning objectives of the internship straddle technical, device design, development and commercialization aspects.

# 4 Description of the Proposed Major Modification(s)

**Extended Full Time (EFT) Option:** Students will have the option of registering in the EFT and completing their program requirements over six sessions. They will adhere to the current SGS guidelines for EFT programs, including the current fee structure, maximum course limits per session and per year, and the current SGS regulations that prohibit students from switching between Full Time and EFT options once an option has been selected. See Section 3.

| YEAR            | FALL            | WINTER       | SUMMER                |
|-----------------|-----------------|--------------|-----------------------|
| Year 1          | 1.0 BME credits | BME1801      | 0.5 APS course credit |
|                 |                 | One of:      |                       |
|                 |                 | BME1439,     |                       |
|                 |                 | BME1802      |                       |
| Year 2 option 1 | 1.0 BME credits | 0.5 elective | BME1899Y              |

#### Sample Student Pathway for EFT Option:

| Year 2 option 2 | BME1898Y       | BME1898Y        | BME1898Y              |
|-----------------|----------------|-----------------|-----------------------|
|                 | 0.5 BME credit | 0.5 BME credits | 0.5 APS course credit |

**Credit Reduction of BME1899/8Y:** The weight of BME1899/8Y, Practical Experience in Applied Research, will be lowered from 1.5 FCEs to 1.0 FCE. Students will be required to take an additional 0.5 FCE half course to meet program requirements. See Section 3.

The proposed modifications will not change what students will know (i.e., no change to program learning outcomes) or the opportunities available to them upon graduation. The addition of an EFT option will change program delivery but will not affect the program's learning outcomes. The addition of an EFT option will positively impact student mental health as several of our international students have shared their disappointment that BME is the only FASE academic unit without the EFT option, and that this option would have reduced stress and allowed them more flexibility in transitioning to the Canadian post-graduate education system generally, and life at the University of Toronto, specifically. Similarly, this option will positively impact mature students returning to post-graduate studies by allowing them more flexibility as they re-adjust to academia. The proposed changes may further benefit students in adapting to post-COVID 19 learning environments.

Table 1, below, outlines the projected enrollment numbers for the part-time, full-time and extended full-time options. Domestic full-time student enrollment is expected to grow by around 10% over the next several years. Currently, we accept up to 5 MD students from the Temerty Faculty of Medicine into the MEng program on a part-time basis and will continue to accept up to 5 concurrent program students each Winter. As a result of a rigid schedule in their medicine program, these students typically complete the program in two years, therefore the domestic part-time student numbers will remain steady. We don't expect a large uptake in the EFT option among domestic students and will limit the number of domestic students in the EFT program option through the admission process. In terms of international students, we expect a 50% uptake for the EFT option. In previous years we have enrolled up to 10 international MEng students year over year. With the EFT option, the program will retain a group of second year MEng students, but in total we expect no more than 15 international students registered in any given year. As outlined in Table 1, the MEng program will reach maximum capacity in Fall 2025.

|          |            | Year of<br>study | Fall<br>2020 | Winter<br>2020 | Fall<br>2021 | Winter<br>2021 | Fall<br>2022 | Winter<br>2022 | Fall<br>2023 | Winter<br>2023 | Fall<br>2024 | Winter<br>2024 | Fall<br>2025 | Winter<br>2025 |
|----------|------------|------------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|
| Domestic | FT         | 1                | 48           | 48             | 55           | 55             | 55           | 55             | 60           | 60             | 60           | 60             | 60           | 60             |
|          |            | Total FT         | 48           | 48             | 55           | 55             | 55           | 55             | 60           | 60             | 60           | 60             | 60           | 60             |
|          | PT<br>(MD) | 1                |              | 5              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              |
|          |            | 2                | 2            |                |              | 5              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              |
|          |            | 3                |              |                |              |                |              |                |              |                |              |                |              |                |
|          |            | Total PT         | 2            | 5              | 5            | 10             | 10           | 10             | 10           | 10             | 10           | 10             | 10           | 10             |
|          | EFT        | 1                | Х            | Х              | 5            | 5              | 5            | 5              | 5            | 5              | 10           | 10             | 10           | 10             |
|          |            | 2                | Х            | Х              | Х            | Х              | 5            | 5              | 5            | 5              | 5            | 5              | 10           | 10             |
|          |            | Total EFT        | х            | Х              | 5            | 5              | 10           | 10             | 10           | 10             | 15           | 15             | 20           | 20             |
| INTL     | FT         | 1                | 8            | 8              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              |
|          |            | Total FT         | 8            | 8              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              |
|          | EFT        | 1                | Х            | Х              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              | 5            | 5              |
|          |            | 2                | Х            | Х              | Х            | Х              | 5            | 5              | 10           | 10             | 5            | 5              | 5            | 5              |
|          | FT         | Total EFT        | х            | X              | 5            | 5              | 10           | 10             | 10           | 10             | 10           | 10             | 10           | 10             |
|          |            | Total<br>Meng    | 58           | 61             | 75           | 80             | 90           | 90             | 95           | 95             | 100          | 100            | 105          | 105            |

Table 1. Master of Engineering in Biomedical Engineering Enrolment Projections (headcount)

# **5 Impact of the Change on Students**

Current BME MEng students will not be impacted by the proposed modifications other than having more options in terms of timing to select courses and complete their program. The modifications will also give students more opportunities to pursue graduate emphases, as they will have an additional 0.5 FCE course as an elective.

The program is typically completed in one year, over three consecutive sessions: Fall, Winter, and Summer. The 2020-2021 cohort of MEng students are expected to complete the program prior to the modifications becoming effective in September 2021.

Previous MEng cohort student have been consulted regarding the EFT option. See Section 3.

# 6 Consultation

Broad consultation has been held with the Director of BME (Dr. Warren Chan), the Associate Director, Professional Programs (Dr. Paul Yoo), the Associate Professor and former Associate Director, Professional Programs (Dr. Jan Andrysek), the Vice-Dean, Graduate Studies, FASE (Dr. Julie Audet), and current and previous BME MEng students.

## 7 Resources

Students in the proposed EFT option will take courses along side their peers in the full-time program option. Allowing a percentage of students to complete the MEng program requirements over six sessions is expected to reduce the burden on BME's resources. While current course enrollment limits prevent some students from enrolling in certain elective courses, EFT students will now have the option of spreading out their course requirements.

Reducing the weight of BME1899/8Y to 1.0 FCE will require students to take another 0.5 FCE half course, which could impact BME course enrolment numbers and potentially impact faculty teaching commitments; however, when balanced with the creation of the EFT option and the resulting reduction in course load per session for EFT students, it is expected that the overall impact on BME's resources will balance out and essentially remain unchanged.

# 8 UTQAP Process

| Steps                                   | Approvals                                     |
|-----------------------------------------|-----------------------------------------------|
| Development/consultation within unit    | May 2020                                      |
| Consultation with Dean's Office (and    | June to November 2020 (sign-off VP-AP/SGS Jan |
| VPAP)                                   | 12, 2021)                                     |
| Unit-level approval as appropriate      | November 2020                                 |
| Faculty/divisional Council              | February 2021                                 |
| Submission to Provost's Office          | February 2021                                 |
| Reported to the Provost and included in | June 2021                                     |
| annual report to AP&P                   |                                               |
| Ontario Quality Council —reported       | June 2021                                     |
| annually                                |                                               |

# 9 Appendix A: Current Learning Outcomes and Degree Level Expectations

| Master of Engineering Degree Level            | Program Learning Outcomes                              | How the Program Design/Structure                          |
|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|
| Expectations                                  |                                                        | Supports the Attainment of the Degree                     |
| (Approved by FASE Council in March 2011)      |                                                        | Level Expectations and Program Learning                   |
|                                               |                                                        | Outcomes                                                  |
| Expectations: The Master of Engineering in B  | iomedical Engineering is awarded to students           | who have demonstrated:                                    |
| 1. Depth and Breadth of Knowledge             | Depth and breadth of knowledge is defined              | The program design and requirement                        |
| A systematic understanding of engineering     | in the MEng in BME program as expertise in             | elements that ensure these student                        |
| and applied science knowledge including,      | at least one field of biomedical engineering           | outcomes for depth and breadth of                         |
| where appropriate, relevant knowledge         | and an understanding of the challenges of              | knowledge are:                                            |
| outside the field and engineering discipline, | moving technology forward in a regulated               | <ul> <li>Coursework in engineering, biomedical</li> </ul> |
| and a critical awareness of current           | environment.                                           | sciences, and entrepreneurship.                           |
| problems and/or new insights, much of         |                                                        | A core entrepreneurship course which                      |
| which is at, or informed by, the forefront of | This is reflected in students who are able             | will be a survey course that will cover a                 |
| their engineering or applied science          | to:                                                    | variety of technologies and applications.                 |
| discipline.                                   | • Apply mathematics, life sciences, physical           |                                                           |
|                                               | sciences, and engineering to biomedical                | Captured in the internship where students                 |
|                                               | device development (e.g., to develop a                 | will cover four important aspects of                      |
|                                               | concept for a device and a design a                    | biomedical device development (need                       |
|                                               | prototype).                                            | assessment, concept development, design                   |
|                                               | <ul> <li>Appreciate potentially conflicting</li> </ul> | and prototype, business models).                          |
|                                               | interests or points of view (patients,                 |                                                           |
|                                               | physicians and businesspersons).                       |                                                           |

| Master of Engineering Degree Level       | Program Learning Outcomes                                    | How the Program Design/Structure                            |
|------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|
| Expectations                             |                                                              | Supports the Attainment of the Degree                       |
| (Approved by FASE Council in March 2011) |                                                              | Level Expectations and Program Learning                     |
|                                          |                                                              | Outcomes                                                    |
| 2. Knowledge of Methodologies            | Knowledge of methodologies is defined in                     | The program design and requirements that                    |
| A conceptual understanding and           | the MEng in BME program as a conceptual                      | ensure these student outcomes for                           |
| methodological competence that:          | understanding and methodological                             | knowledge of methodologies are:                             |
| a. Enables a working comprehension       | competence that:                                             | <ul> <li>Outstanding instructors whose expertise</li> </ul> |
| of how established techniques of inquiry | • Enables a working comprehension of how                     | will bring both theory and practice to the                  |
| are used to interpret knowledge in the   | experimental methods and data analysis                       | classroom.                                                  |
| discipline.                              | methods can be used to assist the design                     | <ul> <li>Course papers and case studies for the</li> </ul>  |
| b. Enables a critical evaluation of      | of biomedical devices and optimize them.                     | Engineering; Commercialization and                          |
| current developments in the discipline.  | <ul> <li>Enables a critical evaluation of current</li> </ul> | Entrepreneurship; and Biomedical                            |
| c. Enables a treatment of technical      | developments in the at least one field of                    | Sciences, where students will have the                      |
| issues and judgments based on            | study at BME and familiarity with                            | opportunity to explore in-depth topics.                     |
| established principles and techniques.   | viewpoints of experts in other disciplines                   | <ul> <li>Captured in the internship where</li> </ul>        |
|                                          | (e.g., medicine and business).                               | students will cover four important aspects                  |
|                                          | <ul> <li>Enables a treatment of technical issues</li> </ul>  | of biomedical device development (need                      |
|                                          | and judgments based on principles of                         | assessment, concept development,                            |
|                                          | engineering designs and method of data                       | design and prototype, business models).                     |
|                                          | analysis.                                                    |                                                             |
|                                          |                                                              |                                                             |
|                                          | This is reflected in students who are able                   |                                                             |
|                                          | to:                                                          |                                                             |

| Master of Engineering Degree Level             | Program Learning Outcomes                                     | How the Program Design/Structure         |
|------------------------------------------------|---------------------------------------------------------------|------------------------------------------|
| Expectations                                   |                                                               | Supports the Attainment of the Degree    |
| (Approved by FASE Council in March 2011)       |                                                               | Level Expectations and Program Learning  |
|                                                |                                                               | Outcomes                                 |
|                                                | Develop a concept for a medical device                        |                                          |
|                                                | based on literature and patent searches,                      |                                          |
|                                                | input from experts.                                           |                                          |
|                                                | <ul> <li>Consider and evaluate the validity of the</li> </ul> |                                          |
|                                                | assumptions on which the device concept                       |                                          |
|                                                | is based.                                                     |                                          |
|                                                | <ul> <li>Critically and comprehensively assess a</li> </ul>   |                                          |
|                                                | complex problem from the viewpoints of                        |                                          |
|                                                | stakeholders.                                                 |                                          |
|                                                | <ul> <li>Distinguish between what is known and</li> </ul>     |                                          |
|                                                | what is unknown and subsequently                              |                                          |
|                                                | elaborate a research plan that will shed                      |                                          |
|                                                | light on the unknown.                                         |                                          |
|                                                | • Evaluate a biomedical device design                         |                                          |
|                                                | strategy and identify areas where                             |                                          |
|                                                | alternative or better approaches could be                     |                                          |
|                                                | used, to consider and evaluate cost-                          |                                          |
|                                                | effectiveness.                                                |                                          |
| 3. Level of Application of Knowledge           | Level of application of knowledge is defined                  | The program design and requirements that |
| Competence in the application of an            | in the MEng in BME program as the ability                     | ensure these student outcomes for level  |
| existing body of data in the critical analysis | to identify areas where engineering can be                    | and application of knowledge are:        |
| of advanced problems or issues. Here,          | used to innovate and solve problems in                        |                                          |

| Master of Engineering Degree Level           | Program Learning Outcomes                                      | How the Program Design/Structure                         |
|----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| Expectations                                 |                                                                | Supports the Attainment of the Degree                    |
| (Approved by FASE Council in March 2011)     |                                                                | Level Expectations and Program Learning                  |
|                                              |                                                                | Outcomes                                                 |
| advanced indicates a difficulty level beyond | medicine and develop a plan to achieve this                    | <ul> <li>Exams and projects in the Biomedical</li> </ul> |
| that encountered at the undergraduate        | goal.                                                          | Engineering Technology;                                  |
| level.                                       | This is reflected in students who are able                     | Commercialization and Entrepreneurship;                  |
|                                              | to:                                                            | and Biomedical Sciences pillar courses.                  |
|                                              | <ul> <li>Proficiently identify, formulate and solve</li> </ul> | <ul> <li>Captured in the internship where</li> </ul>     |
|                                              | advanced biomedical engineering                                | students will cover four important aspects               |
|                                              | problems.                                                      | of biomedical device development (need                   |
|                                              | <ul> <li>Use advance techniques, skills and</li> </ul>         | assessment, concept development,                         |
|                                              | modern engineering tools necessary for                         | design and prototype, business models).                  |
|                                              | to develop a design and prototype for a                        | <ul> <li>Captured in the internship where</li> </ul>     |
|                                              | new biomedical device.                                         | students are expected to achieve                         |
|                                              | <ul> <li>Distinguish between what is known and</li> </ul>      | significant advances in biomedical device                |
|                                              | what is unknown and elaborate a                                | prototyping.                                             |
|                                              | research plan that will shed light on the                      |                                                          |
|                                              | unknown.                                                       |                                                          |
|                                              | <ul> <li>Proficiently design and validate</li> </ul>           |                                                          |
|                                              | experiments, systems, components or                            |                                                          |
|                                              | processes to meet desired needs.                               |                                                          |
|                                              | <ul> <li>Develop a concept for a biomedical</li> </ul>         |                                                          |
|                                              | device based on literature and patent                          |                                                          |
|                                              | searches, input from experts.                                  |                                                          |

| Master of Engineering Degree Level        | Program Learning Outcomes                                       | How the Program Design/Structure                           |
|-------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|
| Expectations                              |                                                                 | Supports the Attainment of the Degree                      |
| (Approved by FASE Council in March 2011)  |                                                                 | Level Expectations and Program Learning                    |
|                                           |                                                                 | Outcomes                                                   |
|                                           | <ul> <li>Critically assess a complex problem with</li> </ul>    |                                                            |
|                                           | opposite and conflicting perspectives.                          |                                                            |
| 4. Professional Capacity/Autonomy         | Professional capacity/autonomy is defined                       | The program design and requirements that                   |
| a. The qualities and transferable skills  | in the MEng in BME program as the ability                       | ensure these student outcomes for                          |
| necessary for employment requiring:       | to translate ideas into commercial realities.                   | professional capacity/autonomy are:                        |
| i. The exercise of initiative and of      | This is reflected in students who are able                      | <ul> <li>Individual exams in the Engineering</li> </ul>    |
| personal responsibility and               | to:                                                             | Technology; Commercialization and                          |
| accountability.                           | <ul> <li>Prepare research papers and practicum</li> </ul>       | Entrepreneurship; and Biosciences pillar                   |
| ii. Decision-making in complex            | reports.                                                        | courses.                                                   |
| situations.                               | <ul> <li>Integrate professional, social, ethical and</li> </ul> | • Evaluation of internship report (quality of              |
| b. The intellectual independence          | environmental considerations into their                         | research proposal, research design and                     |
| required for continuing professional      | decision analysis.                                              | innovation and conclusions).                               |
| development.                              | Display proficient contemporary technical                       | <ul> <li>Course papers and case studies for the</li> </ul> |
| c. The ethical behaviour consistent       | and scientific comprehension and lifelong                       | core Commercialization and                                 |
| with academic integrity and the use of    | learning.                                                       | Entrepreneurship courses where students                    |
| appropriate guidelines and procedures     | • Complete the degree requirements in a                         | will have the opportunity to explore in-                   |
| for responsible conduct in a professional | timely manner.                                                  | depth topics (specifically in the                          |
| context.                                  | • Demonstrate project management skills.                        | Regulatory Requirements Module and the                     |
| d. The ability to participate             | Revise plans and adapt to the unexpected.                       | Biomedical Engineering Ethics Module).                     |
| meaningfully as leaders in society.       |                                                                 | <ul> <li>Independent work in the internship.</li> </ul>    |

| Master of Engineering Degree Level          | Program Learning Outcomes                                  | How the Program Design/Structure                           |
|---------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Expectations                                |                                                            | Supports the Attainment of the Degree                      |
| (Approved by FASE Council in March 2011)    |                                                            | Level Expectations and Program Learning                    |
|                                             |                                                            | Outcomes                                                   |
| 5. Level of Communications Skills           | Level of communications skills is defined in               | The program design and requirements that                   |
| The ability to communicate ideas, issues,   | the MEng in BME program as an ability for                  | ensure these student outcomes for level of                 |
| and conclusions clearly in oral and written | proficient technical and scientific                        | communication skills are:                                  |
| form. This includes being capable of        | communication.                                             | <ul> <li>Course papers and case studies for the</li> </ul> |
| constructing a credible argument and        | This is reflected in students who are able                 | Biomedical Technology;                                     |
| presenting it in appropriate formats.       | to:                                                        | Commercialization and Entrepreneurship;                    |
|                                             | <ul> <li>Construct a credible argument and</li> </ul>      | and Medical Sciences, where students will                  |
|                                             | present it in appropriate formats.                         | have the opportunity to explore in-depth                   |
|                                             | <ul> <li>Generate research and position papers.</li> </ul> | topics.                                                    |
|                                             | <ul> <li>Make professional presentations.</li> </ul>       | Internship report.                                         |
|                                             | <ul> <li>Condense complex topics and analyses</li> </ul>   |                                                            |
|                                             | into simple and easily communicated                        |                                                            |
|                                             | messages for a diverse set of                              |                                                            |
|                                             | stakeholders.                                              |                                                            |
| 6. Awareness of Limits of Knowledge         | Awareness of the limits of knowledge is                    | The program design and requirements that                   |
| Cognizance of the complexity of             | defined in the MEng in BME program as                      | ensure these student outcomes for level of                 |
| knowledge, its underlying assumptions, and  | cognizance of the complexity of knowledge,                 | awareness of limits of knowledge are:                      |
| the potential contributions of other        | its underlying assumptions, and the                        | • Evaluation of internship report (quality of              |
| interpretations, methods, and disciplines.  | potential contributions of other                           | research proposal, research design and                     |
|                                             | interpretations, methods and disciplines.                  | innovation and conclusions). For the                       |
|                                             | This is reflected in students who are able                 | internship report, one of the performance                  |
|                                             | to:                                                        | indicators used will be that the student                   |

| Master of Engineering Degree Level       | Program Learning Outcomes                                 | How the Program Design/Structure             |
|------------------------------------------|-----------------------------------------------------------|----------------------------------------------|
| Expectations                             |                                                           | Supports the Attainment of the Degree        |
| (Approved by FASE Council in March 2011) |                                                           | Level Expectations and Program Learning      |
|                                          |                                                           | Outcomes                                     |
|                                          | Critically assess a complex problem with                  | has the ability to reflect on overall design |
|                                          | opposite and conflicting perspectives                     | strategy and has identified areas where      |
|                                          | (patients, physicians and                                 | alternative or better approaches could       |
|                                          | businesspersons).                                         | have been used, if applicable and the        |
|                                          | • Prepare a research proposal (practicum)                 | student has considered the validity of       |
|                                          | and develop a research plan.                              | his/her assumptions.                         |
|                                          | <ul> <li>Judge when it is necessary to consult</li> </ul> |                                              |
|                                          | experts in specific areas.                                |                                              |
|                                          | • Recognize limitations of methods used (in               |                                              |
|                                          | medicine, engineering and business).                      |                                              |
|                                          | • Envision areas for future work/research,                |                                              |
|                                          | or next steps in research and                             |                                              |
|                                          | development.                                              |                                              |

# 10 Appendix B: Proposed Learning Outcomes and Degree Level Expectations

The learning outcomes and degree-level expectations remain unchanged. See Appendix A.

# Appendix C: Current Calendar Copy with Changes Tracked

### **Master of Engineering**

#### **Program Description**

The MEng program is an accelerated, professional program with a focus on the design and commercialization of biomedical devices. Students will have the opportunity to take on applied design challenges and meet the growing demands of this industry through a four-month practical experience through internships, research projects, or practical course activities.

The MEng program is offered in the fields of 1) Biomaterials, Tissue Engineering and Regenerative Medicine; 2) Engineering in a Clinical Setting; 3) Nanotechnology, Molecular Imaging and Systems Biology; and 4) Neural/Sensory Systems and Rehabilitation.

Students can take the program on a full time, part-time, or extended full-time basis.

### **Full-Time Option**

#### **Minimum Admission Requirements**

- Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy BME's additional admission requirements stated below.
- A four-year bachelor's degree in engineering, medicine, dentistry, or one of the physical or biological sciences from a recognized university, with at least a mid-B average (3.0 grade point average [GPA]) in the final two years of study or over senior-level courses.

#### **Program Requirements**

• Coursework. Students must successfully complete a total 5.0 full-course equivalents (FCEs) as follows:

- At least 2.0 FCEs in biomedical engineering courses; these include all BME and joint BME course offerings.
- ► At least 1.0 FCE in commercialization and entrepreneurship courses such as BME1800H, BME1801H, BME1802H, and BME1405H.
- A 1.5 1.0 FCE Practical Experience in Applied Research course in biomedical device development, usually over one session a full-time placement (BME1899Y), or over three sessions for a part time option-placement (BME1898Y). The internship must be in at least one of the following biomedical engineering research fields: 1) Biomaterials, Tissue Engineering and Regenerative Medicine; 2) Engineering in a Clinical Setting; 3) Nanotechnology, Molecular Imaging and Systems Biology; or 4) Neural/Sensory Systems and Rehabilitation. The practical experience course can be taken in academic research laboratories, government institutions, health-care facilities, in the industry, or in health-care consulting firms.
- The remaining 0.5 1.0 FCE can be a two half courses in either biomedical engineering, commercialization and entrepreneurship, or any graduate-level course the student is interested in.
- All courses must be at the graduate level, which includes both 500- and 1000level. Students can take a maximum of one 500-level course.
- Health and safety training workshops.
- Students have the option of completing an emphasis in Engineering and Globalization; Entrepreneurship, Leadership, Innovation and Technology in Engineering (ELITE); or Forensic Engineering as part of their degree program.
   Please see details in the Biomedical Engineering MEng Emphases section.

#### **Program Length**

3 sessions full time (typical registration sequence: F/W/S);9 sessions part-time (typical registration sequence: F/W/S/F/W/S/F/W/S)

### Time Limit

2 years full time; 6 years part-time

### **Extended Full-Time Option**

#### **Minimum Admission Requirements**

- Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy BME's additional admission requirements stated below.
- A four-year bachelor's degree in engineering, medicine, dentistry, or one of the physical or biological sciences from a recognized university, with at least a mid-B average (3.0 grade point average [GPA]) in the final two years of study or over senior-level courses.

### **Program Requirements**

- Coursework. Students must successfully complete a total 5.0 full-course equivalents (FCEs) as follows:
  - At least 2.0 FCEs in biomedical engineering courses; these include all BME and joint BME course offerings.
  - At least 1.0 FCE in commercialization and entrepreneurship courses such as BME 1800H, BME 1801H, BME 1802H, and BME 1405H.
  - A 1.0 FCE *Practical Experience in Applied Research* course in biomedical device development, usually over one session for a full time placement (BME 1899Y) or over three sessions for a part time placement (BME1898Y). The placement must be in at least one of the following biomedical engineering research fields:

     Biomaterials, Tissue Engineering and Regenerative Medicine; 2) Engineering in a Clinical Setting; 3) Nanotechnology, Molecular Imaging and Systems Biology; or 4) Neural/Sensory Systems and Rehabilitation. The practical experience course can be taken in academic research and teaching laboratories, government institutions, health-care facilities, in the industry, or in health-care consulting firms.
  - The remaining 1.0 FCE can be two half courses in either biomedical engineering, commercialization and entrepreneurship, or any graduate-level course the student is interested in.
  - All courses must be at the graduate level, which includes both 500- and 1000level. Students can take a maximum of one 500-level course.
  - Health and safety training workshops.
  - Students have the option of completing an emphasis in Engineering and Globalization; Entrepreneurship, Leadership, Innovation and Technology in

Engineering (ELITE); or Forensic Engineering as part of their degree program. Please see details in the Biomedical Engineering MEng Emphases section.

### **Program Length**

6 sessions (typical registration sequence: F/W/S/F/W/S)

### Time Limit

3 years