

Report No. 3714 Revised

MEMORANDUM

То:	Executive Committee of Faculty Council (February 1, 2022) Faculty Council (February 18, 2022)
From:	Professor Julie Audet Chair, Engineering Graduate Education Committee (EGEC)
Date:	January 28, 2022; revised February 1, 2022
Re:	EGEC Information Update

REPORT CLASSIFICATION

This is a routine or minor policy matter that has been approved by the Engineering Graduate Education Committee on behalf of Faculty Council¹. It will be considered by the Executive Committee for endorsing and forwarding to Faculty Council for information.

MAJOR MODIFICATION (to a program in the Faculty of Arts and Science which will impact the Faculty of Applied Science and Engineering)

Master of Science in Applied Computing (MScAC) (offered through the Department of Computer Science)	Creation of a new concentration in Artificial Intelligence (AI) in partnership with the Department of Statistical Sciences and the Faculty of Applied Science and Engineering (FASE). See	
	Appendix I.	

RECOMMENDATION FOR FACULTY COUNCIL

For information.

¹ As a result of the 2005 Task Force on Graduate Education at the University of Toronto, EGEC has delegated authority to "consider and approve on behalf of Faculty Council and/or recommend to Faculty Council and/or SGS, matters relating to graduate curriculum, policy, new initiatives, program and course changes".

Major Modification Proposal: New Field or Concentration Within an Existing Graduate Program

University of Toronto Major Modification Proposal:

New Field or Concentration Within an Existing Graduate Program

Program: Master of Science in Applied Computing (MScAC) (offered through the Department of Computer Science) Existing fields or concentrations: Data Science, Applied Math, Quantum Computing Proposed new field or concentration: Artificial Intelligence (AI), Master's Unit (if applicable): Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering (FASE). Faculty/academic division: Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE). Dean's office contact: Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff) Graduate unit contact: Arvind Gupta, Annie En-Shiun Lee			
Existing fields or concentrations:Computer Science)Existing fields or concentrations:Data Science, Applied Math, Quantum ComputingProposed new field or concentration:Artificial Intelligence (AI), Master'sUnit (if applicable):Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee	Program:	Master of Science in Applied Computing	
Existing fields or concentrations:Data Science, Applied Math, Quantum ComputingProposed new field or concentration:Artificial Intelligence (AI), Master'sUnit (if applicable):Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering 		(MScAC) (offered through the Department of	
Applied Math, Quantum ComputingProposed new field or concentration:Artificial Intelligence (AI), Master'sUnit (if applicable):Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee		Computer Science)	
Quantum ComputingProposed new field or concentration:Artificial Intelligence (AI), Master'sUnit (if applicable):Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee	Existing fields or concentrations:	Data Science,	
Proposed new field or concentration:Artificial Intelligence (AI), Master'sUnit (if applicable):Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee		Applied Math,	
concentration:Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee		Quantum Computing	
Unit (if applicable):Department of Computer Science in partnership with Department of Statistical Sciences, and Faculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee		Artificial Intelligence (AI), Master's	
withDepartment of Statistical Sciences, andFaculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee		Department of Computer Science in partnership	
Faculty of Applied Science and Engineering (FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee			
(FASE).Faculty/academic division:Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE).Dean's office contact:Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff)Graduate unit contact:Arvind Gupta, Annie En-Shiun Lee		Department of Statistical Sciences, and	
Faculty/academic division: Faculty of Arts and Science (FAS) Faculty of Applied Science and Engineering (FASE). Dean's office contact: Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff) Graduate unit contact: Arvind Gupta, Annie En-Shiun Lee		Faculty of Applied Science and Engineering	
Faculty of Applied Science and Engineering (FASE). Dean's office contact: Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff) Graduate unit contact: Arvind Gupta, Annie En-Shiun Lee		(FASE).	
(FASE). Dean's office contact: Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff) Graduate unit contact: Arvind Gupta, Annie En-Shiun Lee	Faculty/academic division:	Faculty of Arts and Science (FAS)	
Dean's office contact: Antoinette Handley (Vice-Dean Graduate) / Sharon Kelly (staff) Graduate unit contact: Arvind Gupta, Annie En-Shiun Lee		Faculty of Applied Science and Engineering	
Graduate unit contact: Arvind Gupta, Annie En-Shiun Lee		(FASE).	
Graduate unit contact: Arvind Gupta, Annie En-Shiun Lee	Dean's office contact:	Antoinette Handley (Vice-Dean Graduate) /	
		Sharon Kelly (staff)	
Version date: January 28, 2022	Graduate unit contact:	Arvind Gupta, Annie En-Shiun Lee	
	Version date:	January 28, 2022	

Summary

We propose a new concentration, Artificial Intelligence (AI), as part of the current Master of Science in Applied Computing (MScAC). The MScAC is offered through the Department of Computer Science (DCS), and the new Artificial Intelligence concentration will be offered in partnership with the Department of Statistical Sciences (DoSS) from the Faculty of Arts and Science (FAS), and the Faculty of Applied

Developed by the Office of the Vice-Provost, Academic Programs Template updated on March 7, 2017 Science and Engineering (FASE). Interested students will apply to the MScAC-AI concentration through the Department of Computer Science in the Faculty of Arts & Science.

The MScAC program began in 2010 and subsequently built concentrations in Data Science [DS] (introduced in 2017 jointly with the Department of Statistical Sciences); Applied Math [AM] (2019 jointly with Department of Mathematics), and Quantum Computing [QC] (2020 jointly with the Department of Physics). Interest from industry and students for the MScAC program has far exceeded the most optimistic projections. Recently, Forbes recognized the MScAC Data Science concentration as one of "The 10 Best Artificial Intelligence and Data Science Master's Courses For 2021". Leveraging the success of the program and the positioning of University of Toronto (U of T) as one of the best universities for AI research in the world, we propose to build an Artificial Intelligence concentration within the MScAC program.

The proposed AI concentration reflects the university's strength in Artificial Intelligence as the birthplace of Deep Learning through the work of Turing Award winner Geoffrey Hinton. In recognition of the increasing importance of many aspects of AI, curricular development in this area is critical to the research and training missions of these units. Leveraging faculty strength in this area is also aligned with the University's ambitions to become the global leader in Artificial Intelligence.

The demand for trainees with an expertise in Artificial Intelligence has become acute, as massive computational power and data storage became ubiquitous and simple to acquire. The proposed concentration in Artificial Intelligence builds on the current MScAC infrastructure by bringing in expertise from Artificial Intelligence, to meet:

- 1. Current student needs for master's level education in Artificial Intelligence;
- 2. Industrial demand for Artificial Intelligence experts (i.e., scientists, researchers, engineers);
- 3. Student demand for research experience with firms addressing significant challenges using techniques in Artificial Intelligence; and
- 4. UofT's burgeoning research emphasis in Artificial Intelligence.

Effective Date

Effective September 1, 2022. In-progress students who have taken the required coursework will be allowed to switch to the concentration as of September 1, 2022.

Academic Rationale

Artificial Intelligence (AI) germinated from a desire to imitate human behaviours with computational means. While much of AI is centered in Computer Science, the field draws on tool, techniques, and expertise from many disciplines including statistics, mathematics, and engineering. Today, AI includes intellectual focus such as knowledge representation, probabilistic and statistical theory, machine learning (deep learning), computational linguistics and natural language processing, computer vision, and robotics; AI is also being applied to a wide range of scientific domains, from medicine to the humanities. The efficacy of AI is embraced in industry as we witness rapid adoption from recommenders in e-commerce to self-driving vehicles in transportation. The COVID pandemic has accelerated this demand, as nearly every facet of human endeavour becomes digitally enabled. As such, there is an increasing need for automating processes, analyzing massive datasets, and modeling human tasks. Clearly this need will continue to grow, a trend that will substantially expand the need of the Artificial Intelligence expert.

An AI expert requires proficiency in AI techniques and methods; training in data management and distributed computing; and experience in scientific or industry collaboration. The proposed concentration in AI is unique at the University of Toronto and would become the pre-eminent program in Canada due to the strength and expertise in the partnering academic units. In addition, the fast-growing AI ecosystem in the Greater Toronto Area and the unrivalled wealth of potential collaborators in hospitals, research labs, and other entities would further enhance the quality and the attraction of the program. Note that many other institutions are also introducing graduate level programming in AI. For example, the University of Montreal, Carnegie Mellon University, and Northeastern University all offer several pathways to professional graduate-level education in AI. However, this MScAC concentration would be unique in offering industry-oriented applied research opportunities between collaborating faculties. Currently, at the undergraduate level, the Department of Computer Science offers a focus in AI as part of its majors while the FASE offers a minor in AI engineering and a certificate in AI engineering. At the graduate level, students may choose to undertake research in AI through the research-based MSc or PhD programs or through an AI emphasis applied to areas such as in Health Policy, Management and Evaluation or Public Health. However, there are no disciplinary focused AI programs at the graduate level in either FAS or FASE. The structure of the MScAC program can readily accommodate a concentration in AI, and the curricular demand for training AI is best met through an AI concentration offered through the MScAC program.

This proposed new concentration within the current MScAC is characterised by the strong involvement of academic units within FAS and FASE that are responsible for a significant portion of the curriculum. This concentration also enhances and complements the current concentrations in the MScAC program. The concentration bears the name of the broad discipline of Artificial Intelligence, which couples interest from students for training in advanced computing, statistics, and engineering. With the growing demand for roles in industry with increasingly more sophistication in AI methodologies, this calls for customized curricula and training within the overall framework of the general MScAC program for an AI Concentration.

In summary, the massive growth in computational power, dataset availability, and problem complexity encountered by practitioners and researchers has been accompanied by increasing demand for specialized expertise lying at the interface of computational, statistical, and engineering sciences. This need is acutely felt in finance, life sciences, material sciences, and other crucial applications as the AI models used required either increased complexity or fundamentally different ways of problem solving. The partnership proposed for the AI concentration creates a seamless ecosystem that allows students to study AI from the vantage point of each of these disciplines. We believe that the proposed concentration will help meet demand, further integrating the activities between the partnering academic units, elevate the quality of training within those units, and align with the University's ambitions in and commitments to Artificial Intelligence.

Need and Demand

Media reports constantly remind us of the emergence of large-scale complex problems in nearly every facet of life. These reports speak to the already enormous demand for expertise at the interface of technology in society and the growing opportunities for employment.

Nearly 50% of applications to the MScAC program indicate strong interest in AI. While students in the program could take relevant AI courses and strive to secure an AI research project, we believe this concentration will:

- Bring together expertise from across campus to build a focal point for AI teaching;
- Act as a clear marker for industry to secure AI talent;
- Pool resources in various academic units to enhance AI offerings;
- Clearly demarcate students interested in AI who could then have some priority in securing seats in graduate level AI courses in FAS and FASE; and
- Establish U of T as a centre for applied AI research and training.

We note that this concentration is part of the strategy for planning and forecasting the course and supervisor capacity in AI graduate education to better plan for ongoing demand.

In addition to the flow of student interest in AI, industrial demand for AI experts also contributes to the advancement of this field. This demand is highly evident in the MScAC program. MScAC has a long list of employers interested in engaging AI talent including Layer 6 AI, Modiface, Samsung AI Research, Vanguard, SOTI, and a long list of many more. This is not a fleeting trend. There has been a massive increase in companies looking to establish AI capabilities by engaging an AI proficient workforce. As an exciting kick-off to the 2022 new year, Forbes has named Toronto as the most important AI hub (#8 in the 10 AI Predictions for 2022). With Toronto as a global centre for AI research, it is little wonder multinational firms are establishing AI labs in the city while there is a burgeoning AI start-up and SME ecosystem within the Greater Toronto Area.

Year in Program			Acad 2022	emic Y -23	ear	Acad Year 24		-	Acad Year 25	-	-	Acad Year 26	-	_	
	Total #	# in Conc	# Dom.	Tot #	# in Conc	# Dom	#	#	#	#	#	#	#	#	#
1	79	0	15	90	30	20	105	35	25	120	40	30	135	45	35
2	64	0	22	79	15*	15	90	30	20	105	35	25	120	40	30
Total	143	0	37	169	45	35	195	65	45	225	75	55	255	85	65

Table 1: Graduate Enrolment Projections*

*reflects current MScAC students who can choose to opt into the AI concentration with the approval of the MScAC director.

Students admitted into the concentration will apply directly to the concentration through the MScAC program (i.e., the concentration is not open to students enrolled in Statistical Sciences or FASE graduate programs).

Notes:

1. Number of domestic students is an estimate of domestic enrolment across all MScAC concentrations (i.e. not just only the AI concentration). Traditionally about 35% of MScAC enrolments have been domestic but COVID seems to have disrupted this. We are projecting those domestic students will comprise a larger share of students going forward but not back to the pre-COVID numbers.

2. We are aware that some students who began the program in September 2021 may wish to be in the AI concentration once approved. We are providing an estimate of the number of such requests that may be granted in Summer, 2022. There is no material impact on the program for granting such a request since those students must show they will have fulfilled the academic requirements for this concentration by December 2022.

3. Admission targets in the table are conservative, based on:

a. Staffing: We are in discussions with FAS to expand the MScAC team commensurate with growth in the program.

b. Faculty supervision and available seats in courses: Targets are set in consultation with each partner department. We are being conservative in projecting the numbers in the table.

c. Space to house students: The program is housed at 700 University. There are currently 135 dedicated desks for MScAC and we plan to assign these to incoming students in first year (row marked as 1 for Year in the Program) since second year students will be spending the majority of their time at their internship and thus are not assigned seating (row marked as 2 for Year in the Program).

d. New concentrations: Discussions are on-going to build four additional concentrations. This may expand the partnership to additional departments which would increase resources and allow the program to expand further.

e. Quality of Applicants: Admission targets may not be met if there are insufficient applicants who meet the quality standards of the program.

These projections are commensurate with known demand. For example, the AI sector in Toronto has seen a rapid increase in demand for AI Experts in recent years. For the 2019 MScAC cohort, 41/54 (77%) of the internship projects involve some aspect of AI or Data Science; for the 2020 cohort, this demand has increased to 52/64 (81%). Student demand for AI courses also continues to increase.

Admission Requirements

Students entering the Artificial Intelligence concentration of the MScAC program at the University of Toronto will register in the Department of Computer Science. The minimum admission requirements listed below are consistent with those criteria in the Department of Computer Science MSc program, and are similar to those of the current MScAC program concentrations.

Minimum Admission Requirements:

- Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy the Department of Computer Science's additional admission requirements stated below.
- An appropriate bachelor's degree from a recognized university in a related area such as physics, computer science, mathematics, statistics, engineering, or any discipline where there is a significant quantitative component. The completed bachelor's degree must include significant exposure to computer science or statistics or engineering including coursework in, calculus, linear algebra, probability and statistics,

programming languages, and computational methods as well as data structures and algorithms and computer systems.

- A standing equivalent to at least B+ in the final year of undergraduate studies.
- Applicants whose primary language is not English and who have graduated from a university where the primary language of instruction is not English must submit results of the Test of English as a Foreign Language (TOEFL) and International English Language Testing System (IELTS) with the following minimum scores: Internet-based TOEFL: 93/120 and 22/30 on the writing and speaking sections. IELTS: an overall score of 7.0, with at least 6.5 for each component.
- If students complete a portion of their degree in English, or part of their degree at another university where English is the language of instruction, applicants must still provide proof of English-language proficiency.
- Three letters of reference from faculty and/or employers, with preference for at least one such letter from a faculty member in Artificial Intelligence.
- Answers to four questions explaining applicant's interest in Artificial Intelligence and objectives for the program.
- Applicants must indicate a preference for a concentration in AI in their application. Admission to the AI concentration is on a competitive basis. Students admitted to the MScAC program are not automatically admitted to the AI concentration upon request.

As noted in the minimum admission requirements, admission to the AI Concentration is competitive. Achievement of the minimum standards does not guarantee admission into the program. Those accepted will normally have achieved a standing considerably higher than the minimum B+ standing and/or have demonstrated exceptional ability through appropriate workplace experience.

6 Program Requirements

Program Requirements

- Coursework. Students must successfully complete a total of **3.0 full**course equivalents (FCEs) as follows:
 - 1.5 FCEs of coursework in the area of Artificial Intelligence
 - 1.0 FCE selected from the core list of AI courses (see list below)¹ from at least two different research areas
 - 0.5 FCE selected from additional AI courses outside the core list.
- 1.0 FCE in required courses:
 CSC2701H Communication for Computer Scientists (0.5 FCE)
 CSC2702H Technical Entrepreneurship (0.5 FCE)
- The remaining 0.5 FCE of coursework will be chosen from outside of AI.
 - Course selections should be made in consultation with and approved by the Program Director. Appropriate substitutions may be possible with approval.
 - A maximum of 1.0 FCE may be chosen from outside the Computer Science (CSC course designator) graduate course listings.
 - An eight-month industrial **internship**, CSC2703H (3.5 FCEs). The internship is coordinated by the department and evaluated on a pass/fail basis.

Please see Appendix B for a full list of the course numbers and titles. Note that these are existing courses offered by the participating departments. The creation of the AI concentration does not, has prompted the cross-listing of a new cross-listing of a robotics course at the graduate level. Students enrolled in the AI concentration will select existing courses from the Department of Computer Science, Department of Statistical Sciences, and Faculty of Applied Science and Engineering.

The AI concentration program requirements follow the structure of the existing MScAC program. The existing program and new concentration are designed as a 16-month (4 session, F/W/S/F) full-time program comprised of 4 half courses (2.0 FCEs) that will be completed in 8-months (2 sessions), 2 required courses in technical communications and entrepreneurship (1.0 FCE) and an 8-month (2 session) industrial internship (3.5 FCE).

Students in the new AI concentration, like those in the existing MScAC program, follow a course of study that is fully integrated; course projects and assignments will be designed to integrate the material learned from a variety of the courses and to utilize it in a practical context. Excellent communication and presentation skills will be emphasized in both the oral and written components of the projects and assignments. The program contains an 8-month internship component from May – December. The students will enter the internship immediately after coursework is completed at the end of the Winter term.

The required course work can be completed during the regular academic year. The course load of two half courses per session is identical to that of the current MScAC program.

In addition to the 4 half courses taken during the first 2 sessions, an additional two specialized half courses (in Technical Communication, and in Technical Entrepreneurship) are required. One of these courses is taken during the first eight months of the student's study, while the other is taken during the eight-month internship period.

Whereas the Province's Quality Assurance Framework requires that students complete a minimum of 2/3 courses at the graduate level, the University of Toronto requires graduate students to complete all their course requirements from amongst graduate level courses. This proposed AI Concentration complies with this requirement.

Among the total 2.0 FCEs, a minimum 1.0 FCE will come from the Computer Science graduate course listings, while a maximum of 1.0 FCE may be taken outside of Computer Science. Course selection must be approved by the program director.

Within the MScAC program support for establishing and maintaining industrial partners for internships is key to attracting students. The internship provides a critical experiential learning component, and helps students improve their communication skills. Students will not only gain practical experience in knowledge and technology transfer but will also have access to well-trained professional support staff in their

¹ Please refer to the proposed SGS calendar copy in Appendix A to see the list of core courses that students can choose from.

host company to realize their vision and make further connections in industry. An internship will be required for all students in the AI Concentration. This concentration would make MScAC interns even more attractive to employers.

For academic supervision, students in the AI concentration may choose a supervisor from any of the partner academic units (DCS, DoSS, FASE). Supervisors from other units may be chosen with approval of the program director. Note that the selection of an appropriate academic supervisor is facilitated by the program director once the student has accepted a qualifying internship placement.

All students in the MScAC, including students in the new concentration, receive individualized advising to ensure that they select courses that a) meet the program requirements, including any requirements specific to the concentration; b) have sufficient academic preparation for each course; and c) support their professional goals.

Students currently enrolled in the MScAC program may, as of September 2022, apply to join the AI concentration and will be considered on a case-by-case basis.

Degree Level Expectations (DLEs), Program Learning Outcomes and Program Structure

Table 2: Master's DLEs

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes	
Expectations: This AI Concentr	ation in the MScAC program is awarded to stude	nts who have demonstrated:	
Depth and Breadth of	Depth and breadth of knowledge is	Students will be able to understand the concepts	
Knowledge	understood in the MScAC program as the	of AI; use a variety of computational resources;	
	ability to explore, manipulate, and visualize	and develop new AI algorithms to fit specific	
A systematic understanding	complex data and models into informed	application areas. Relevant AI courses include:	
of knowledge, and a critical	decisions.	CSC2515 - Introduction to Machine Learning	
awareness of current		ECE1513 - Introduction to Machine Learning	
problems and/or new	This is reflected in students who are able to:	CSC2516 - Neural Networks and Deep Learning	
insights, much of which is at,	 Use advanced problem-solving 	MIE1517 - Introduction to Deep Learning	
or informed by, the forefront	skills utilizing appropriate	CSC2502 - Knowledge Representation &	
of the academic discipline,	computational tools.	Reasoning	
field of study or area of	Perform deep quantitative	CSC2533 - Foundations of Knowledge	
professional practice.	analysis of a given problem across	Representation	
	a variety of domains.	CSC2503 - Foundations of Computer Vision	

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
	Use abstract reasoning and	ECE1512 - Digital Image Processing and
	demonstrable critical and logical	Applications
	thinking.	CSC2501 - Computational Linguistics
		CSC2511 - Natural Language Computing
		AER1513 - State Estimation for Aerospace
		Vehicles (State Estimation for Robotics)
		AER1517 - Control for Robotics
		CSC2630 - Introduction to Mobile Robotics
		The program design and requirement elements
		that ensure these student outcomes for depth
		and breadth of AI knowledge are the CSC, STA
		and/or FASE graduate courses selected by the
		student, or relevant courses from other
		departments. This includes 1.5 FCEs of
		coursework in the area of Artificial Intelligence
		with 1.0 FCE selected from the core list of AI
		courses (see list above) from at least two
		different research areas for breadth and 0.5 FCE

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
		selected from selected from additional AI
		courses outside the core list for depth.
Research and Scholarship	Research and Scholarship is defined in the	In achieving these learning outcomes, students in
	MScAC program as the ability to abstract	the Artificial Intelligence concentration will be
A conceptual understanding	information.	able to
and methodological		• Define and describe AI techniques
competence that	This is reflected in students who are able to:	and where these differ from classical
 Enables a working 	 Apply quantitative techniques to produce 	techniques,
comprehension of how	effective designs and solutions to a given	Identify when where there is an
established techniques of	problem.	advantage to using AI in the broader
research and inquiry are	 Identify, analyze and synthesize scholarly 	context of enterprise-wide AI efforts
used to create and	literature relevant to the problem at hand.	and algorithm development,
interpret knowledge in the	 Formulate hypotheses, and test these 	Formulate AI methods, spanning
discipline.	against given data.	existing techniques and algorithms,
• Enables a critical evaluation	 Create, review, validate and refine 	which are tailored to new problems
of current research and	quantitative models to validate hypotheses.	and applications,
advanced research and		Communicate models and their
scholarship in the discipline		analysis to non-experts verbally and
or area of professional		in written form.
competence.		

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
Enables a treatment of		The MScAC program offers professional courses
complex issues and		(CSC2701 – Communication for Computer
judgments based on		Scientists and technical entrepreneurship and
established principles and		business CSC2702 – Technical Entrepreneurship)
techniques; and, on the		designed to assist students in presenting
basis of that competence,		themselves and their work as well as in scientific
has shown at least one of		communications and business writing.
the following:		
• the		The program requirements that ensure these
development		student outcomes for research and scholarship
and support		come from coursework training – students must
of a sustained		select courses that have been vetted for
argument in		appropriate technical content. Relevant courses
written form;		could include:
or		CSC2416 - Machine Learning Theory
 originality in 		CSC2506 - Probabilistic Learning, Uncertainty,
the		and Reasoning
application of		CSC2518 - Spoken Language Processing
knowledge.		CSC2523 - Object Modelling and Recognition
		CSC2528 - Advanced Computational Linguistics

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
		CSC2532 - Statistical Learning Theory
		CSC2534 - Decision Making Under Uncertainty
		CSC2539 - Topics in Computer Vision
		CSC2541 - Topics in Machine Learning
		CSC2542 - Topics in Knowledge Representation &
		Reasoning
		CSC2545 - Kernel Methods & Support Vector
		Machines
		CSC2547 - Current Algorithms and Techniques in
		Machine Learning
		CSC2548 - Machine Learning in Computer Vision
		CSC2556 - Algorithms for Collective Decision
		Making
		CSC2558 - Human Computation, Randomized A/B
		Experiments and Statistical Machine Learning
		CSC2559 / ECE1784 - Trustworthy Machine
		Learning
		CSC2606 - Introduction to Continuum Robotics
		CSC2621 - Topics in Robotics
		CSC2626 - Imitation Learning for Robotics

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
Level of Application of	Level of application of knowledge is defined in	The program design and requirement elements
Knowledge	the MScAC program as the ability for	that ensure these student outcomes for level of
	systematic inquiry involving the practical	application of knowledge are:
Competence in the research	application of quantitative techniques in a	
process by applying an	professional setting (company site, hospital,	The application of research knowledge is assured
existing body of knowledge	etc.) during an applied research internship.	through an industrial research internship that is
in the critical analysis of a		jointly supervised by an academic AI expert and
new question or of a specific	This is reflected in students who are able to:	an industrial expert. During the internship,
problem or issue in a new	• Demonstrate competence in applying an	students will be required to apply their
setting.	existing body of knowledge in the critical	knowledge of AI to real-world problems in an
	analysis of a new question or of a specific	industrial setting.
	problem or issue in a new setting.	Internships are carefully procured and are
	 Deploy advanced theories, knowledge, 	reviewed by the MScAC program to ensure
	methodologies, and techniques for a	students are presented with problems requiring
	specific, often stated, business or client-	quantitative solutions with insights coming from
	driven challenge.	the capabilities of AI.
	 Showcase an ability to take unstructured 	The industry supervisor ensures problems are
	problems and deploy empirical	well formulated, and resources such as data are
	methodologies.	adequately provided while the academic
		supervisor is responsible for ensuring the student

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
		is utilizing advanced AI techniques and helps the
		student develop new techniques as needed.
Professional	Professional capacity/autonomy is defined in	The program design and requirement elements
Capacity/Autonomy	the MScAC program as the qualities and	that ensure these student outcomes for
	transferable skills necessary for employment	professional capacity/autonomy are:
 The qualities and 	requiring the exercise of initiative and of	
transferable skills	personal responsibility and accountability;	The industrial research internship
necessary for employment	decision-making in complex situations; the	that focuses on the exploration of
requiring	intellectual independence required for	new or specific problems, coupled
• the exercise of	continuing professional development; the	with the students' quantitative skills
initiative and	ethical behaviour consistent with academic	and statistical rationale all with the
of personal	integrity and the use of appropriate guidelines	aim of solving practical issues in an
responsibility	and procedures for responsible conduct of	environment requiring complex AI
and	research; and the ability to appreciate the	techniques.
accountability;	broader implications of applying knowledge to	• In addition, as outlined in section 6,
and	particular contexts.	there is a special course on technical
decision-		communications CSC2701 –
making in	This is reflected in students who are able to:	Communication for Computer
complex	Prepare written reports and	Scientists and technical
situations;	deliver oral presentations to	entrepreneurship and business

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
 The intellectual independence required for continuing professional development. The ethical behavior consistent with academic integrity and the use of appropriate guidelines and procedures for responsible conduct of research. The ability to appreciate the broader implications of applying knowledge to particular contexts. 	 expert (quantitative teams) and non-expert audiences (upper management) Provide a holistic perspective on advanced problem solving utilizing quantitative techniques in industry problems in a real-world setting. 	 CSC2702 – Technical Entrepreneurship. This is a required course. Students attend regularly scheduled meetings with both their academic and industrial supervisors and, at the industry site, with a broader team. Students present their research findings to both their supervisors in a research report that is assessed for their ability to apply knowledge in a new and creative manner, for their intellectual independence, and their ability to abstract their own work into a broader setting.
Level of Communication Skills	Level of communication skills is defined in the MScAC program as the ability to communicate ideas, issues, and conclusions clearly.	The program design and requirement elements that ensure these student outcomes for level of communication skills are:

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
	 This is reflected in students who are able to: Construct a credible argument and present it in appropriate formats Construct detailed research reports and executive summaries Deliver professional presentations to expert (quantitative teams) and non-expert audiences (upper management) 	 The required written report on the internship experience is designed for students to connect their course work with their industrial experience. The oral presentation in front of faculty, industry experts and students will require students to discuss and critically assess their success at applying their academic knowledge to specific problems they encountered in their internship. In addition, as outlined in section 6, there is a special course on technical communications skills; CSC2701 – Communication for Computer Scientists. This is a required course.
Awareness of the Limits of Knowledge	This DLE and its PLOs are being developed through the current CSC UTQAP review.	Will be documented via the current CSC UTQAP review.
Cognizance of the complexity of knowledge and of the		

Master's Degree Level Expectations (Based on the Ontario Council of Academic Vice-Presidents [OCAV] DLEs)	Master's Program Learning Outcomes	How the Program Design and Requirement Elements Support the Attainment of Student Learning Outcomes
potential contributions of		
other interpretations,		
methods, and disciplines.		

Assessment of Teaching and Learning

- Please describe the methods of evaluation for the various program requirements as they relate to the proposed field or concentration.
- Describe how the methods for assessing student achievement are appropriate and effective relative to established program learning outcomes and DLEs (in other words, how will faculty be able to determine whether students have learned and can do what we expect them to by the end of the program).
- How will the program document and demonstrate the level of performance of students consistent with the University's DLEs?

Student performance in the program will be assessed through a variety of methods including reports, presentations, assignments, case studies, and exams. Students will receive letter grades for their performance in all courses except that CR/NCR is given for their written reports on industrial internship.

The MScAC program has several formal processes in place to ensure the quality and excellence of the student's performance at each stage in the program. Entering students create a relevant study plan that is assessed for what they have already studied, what they plan to study, and then ascertain whether that meets the PLO's, program requirements, and the student's personal learning objectives. This study plan is assessed by the concentration lead who works with the students on refining it; the final plan is assessed by the program director and finally the DCS graduate chair.

There is also a formal process to ensure each of the procured internships contains an appropriate level of applied research for the program by three MScAC research and business development officers. Any revision request discrepancies are further assessed by the program director.

Lastly, the MScAC program has a formal review process to ensure that the MScAC academic requirements are met for each student. Three individuals must sign off on the final research report – the industry supervisor, the academic supervisor, and the program Director. The MScAC program will assess the final report to decide whether the final report should require minor revisions or major revisions.

Teaching and Learning Outcomes	Assignments	Projects	Exam	Presentations	Internship
1. Depth and Breadth of Knowled	dge				
Display expertise in AI methods					
and algorithms	Yes	Yes	Yes	Yes	Yes
Critically assess a problem that					
is complex and has alternative					
design approaches		Yes		Yes	Yes
Adjust communications to					
address different audiences	Yes			Yes	Yes
Identify key debates that result					
from conflicting					
practitioner/scientists/business					
views		Yes		Yes	Yes
2. Scholarship					
Conceptualize, design,					
implement an Al project	Yes	Yes		Yes	Yes
Make informed judgments on					
complex issues in the context of					
complex analysis	Yes	Yes	Yes	Yes	Yes
Articulate those strategies and					
judgments	Yes	Yes		Yes	Yes
3. Application of Knowledge		•			
Assess a complex problem from					
the viewpoints of					
practitioners/scientists/business	Yes	Yes			Yes
4. Professional Capacity		•			
Complete the degree					
requirements in a timely					
manner	Yes	Yes		Yes	Yes
Demonstrate project					
management skills	Yes	Yes		Yes	Yes
5. Communication Skills	1			1	1
Communicate complex ideas					
effectively	Yes	Yes		Yes	Yes

Developed by the Office of the Vice-Provost, Academic Programs Template updated on March 7, 2017

Prepare reports and				
presentations that outline the				
problem, option, and solutions	Yes	Yes	Yes	Yes

Consultation

The proposed AI concentration is the result of a lengthy discussion with faculty members from various departments from FAS and FASE.

There has been broad consultation for the AI concentration within the Department of Computer Science. Starting in 2019, faculty in the Department began discussing the potential for a Masters in AI. In 2020, the DCS graduate affairs committee created a working group to consider how best to construct an AI concentration within the MScAC program. The working group concluded that we should explore a partnership with the Department of Statistical Sciences, and Faculty of Applied Science and Engineering (primarily but not exclusively with the Department of Electrical and Computer Engineering and the Department of Mechanical and Industrial Engineering). A working group of these four departments was established in Summer 2021, resulting in this major modification proposal. Additional consultations took place with current students and alumni of the MScAC program, the latter through the MScAC alumni association. A roundtable was held with industry partners in April, 2021 to discuss the concentration. This was followed by a focused roundtable in August, 2021 with AI leaders in the Toronto tech . All verified that an AI concentration would be extremely well received.

With respect to the broader University of Toronto community, we consulted with the Office of the Vice-Provost, Research and Innovation about broader research interests in AI at U of T. We also consulted with the Industry Partnership Office and verified they are also witnessing significant demand for advanced AI in the Toronto Information Technology ecosystem. We consulted with a number of other academic units, primarily through a Data Science working group established by the Faculty of Arts and Science. This consultation included representatives from the Faculty of Medicine, Faculty of Applied Science and Engineering, the Dalla Lana School of Public Health, as well as departments in FAS. This consultation allowed us to position the AI concentration and the existing MScAC Data Science concentration as unique and nonoverlapping. A number of meetings have been held with the leadership in FASE including with the Office of the Dean and with the Chairs of ECE and MIE. All were very supportive of jointly building this concentration.

We are cognizant that Artificial Intelligence is a strategic priority for the university and that a number of other academic units are planning to bolster their faculty complement in this area. This should create additional opportunities for partnership with the MScAC AI concentration. We welcome discussions with any academic unit that may be interested in participating in this concentration (or more broadly in the MScAC program).

Resources

As the program grows, there will be resource implications on various fronts. The concentration will be housed within the MScAC space at 700 University and additional space needs will be minimal (see Space/Infrastructure section). There are currently 135 dedicated desks for MScAC and we plan to assign these to incoming first year students, since second year outgoing students will be at their internship location.

Administrative staffing will be handled by the MScAC program and will be funded through revenues from the concentration itself. No new central funds will be required as this is intended to be a self-sustaining concentration within the existing MScAC program. MScAC revenue consists of student tuition, ancillary fees, and funds from industry; these funds are sufficient to cover all incremental expenses.

Our research and business team procures and reviews applied research internships from industry partners to help match students to high quality research projects. Therefore, incremental increase of enrolment targets is retrospectively adjusted based on the number of internships seen in the previous year by the team. The research and business development team are starting to build demand outside the Greater Toronto Area; there should be significant potential in other major Canadian tech centres (Waterloo, Ottawa, Montreal, Vancouver, etc). The internships are fully funded by the industry partner who will provide salary for the student, the project may also be eligible for MITACS funding. Our current

relationship with Mitacs Inc indicates that these internships should qualify for partial funding under the Mitacs Accelerate Canada program, which would offset \$10,000 of the employer's costs. Note that current average total compensation is \$63,000 per

student over eight months. The MScAC provides a loan structure for those students who demonstrate need and students are able to pay back the loan based on their internship and post-graduate job.

The program will continue to communicate annually with each of the collaborating departments on available resources in supervision and seats in courses in order to project admission targets. The DoSS and FASE will contribute in course/teaching capacity (see Appendix B) and in supervisory capacity (see Table 4). The MScAC has developed a revenue sharing model across academic units facilitating students taking courses or being supervised outside DCS. Simultaneously, the working group that was formed for the AI Concentration composed of faculty members from both FAS and FASE will continue to meet annually to provide oversight on the AI course offerings, such as removing courses that are no longer offered and adding new courses to the list, and the curriculum more broadly.

Faculty Complement

The U of T Strategic Research Plan identifies artificial intelligence as one of the thematic areas for research excellence and collaboration due to U of T researchers being world-leaders in advancing artificial intelligence in areas such as computer vision, computational linguistic and natural language processing, knowledge representation and reasoning, cognitive robotics, and machine learning. The concentration will require faculty expertise in various areas of AI as listed above and DCS is currently in the process of hiring several FTEs in the area of Artificial Intelligence. The Department of Chemical Engineering and Applied Chemistry has recently hired a faculty member in AI. There are faculty members working in AI or using AI in every FASE Department, with the advancement goal of having an AI/DS faculty member in each department. In the coming years, given the significant focus on AI within these departments and across the University, we expect additional faculty hiring in AI related areas, which will be in-sync with the expected growth rate of the proposed concentration: Knowledge Representation and Reasoning, Computer Vision and Computational Imaging, Systems, including Data Systems, Security and Cryptography, and Machine Learning with a focus on Deep Learning.

Table 4: Detailed Listing of Committed Faculty

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Arvind Gupta, Professor	*Computer Science, FAS	Innovation policy
and Director of MScAC		
James Stafford,	* Statistical Sciences, FAS	Data Science
Professor & Vice-Dean of		
Academic Operations		
Chris J. Maddison,	*Computer Science, FAS	Machine learning
Assistant Professor	*Statistical Sciences, FAS	
	Vector Institute	
Marsha Chechik,	*Computer Science, FAS	Software engineering
Professor & Chair	***	
Graeme Hirst, Professor	*Computer Science, FAS	Computational linguistics
& Graduate Chair	*0	
Suzanne Stevenson,	*Computer Science, FAS	Computational linguistics
Professor & Vice Chair		
Sven Dickinson,	*Computer Science, FAS	Computer vision
Professor	Samsung Toronto Al Research	
	Center	
Michael Brudno,	*Computer Science, FAS	Computational medicine
Professor	University Health Network	
	Vector Institute	
Peter Marbach,	*Computer Science, FAS	Social networks
Professor		
Eyal de Lara, Professor,	*Computer Science, FAS	Systems & mobile
Associate Chair,		
Research		
Daniel Wigdor	*Computer Science, FAS	Input sensors
Professor	Facebook Research Science	
Associate Chair,		
Partnerships and		
Innovation		

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Sam Toueg, Professor	Computer Science, FAS	Distributed computing
Richard Zemel, Professor	*Computer Science, FAS	Machine learning
	Vector Institute	methods, with a specific
		focus on unsupervised
		learning, and
		probabilistic models of
		neural representations
Ravin Balakrishnan,	*Computer Science, FAS	Human-computer
Professor		interaction (HCI)
Geoffrey Hinton,	*Computer Science, FAS	Machine learning
Distinguished Emeritus	Google	
Professor	Vector Institute	
Anna Goldenberg,	Computer Science, FAS	Machine learning
Associate Professor	SickKids Research Institute	
	Vector Institute	
Allan Borodin, University	*Computer Science, FAS	Theoretical computer
Professor		science
Amir-Massoud	Vector Institute	Reinforcement learning
Farahmand, Assistant	Computer Science, FAS	
Professor, Status-Only	Mechanical and Industrial	
	Engineering, FASE	
Sushant Sachdeva,	*Computer Science, FAS	Theoretical computer
Associate Professor	Vector Institute	science
Frank Rudzicz, Associate	St. Michael's Hospital	Computational linguistics
Professor, Status-Only	Surgical Safety Technologies	
	Computer Science, FAS	
Fanny Chevalier,	*Computer Science, FAS	Information visualization
Assistant Professor	*Statistical Science, FAS	
Igor Gilitschenski,	*Computer Science, FAS	Robotics, computer
Assistant Professor		vision
Florian Shkurti, Assistant	*Computer Science, FAS	Robotics, computer
Professor		vision

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Bo Wang, Assistant	*Computer Science, FAS	Machine learning
Professor	Vector Institute	
	Faculty of Medicine	
	University Health Network	
David Duvenaud,	*Computer Science, FAS	Machine learning
Assistant Professor		
Daniel Roy, Assistant	*Statistical Sciences, FAS	Machine learning
Professor	*Computer Science, FAS	
	Electrical and Computer	
	Engineering, FASE	
Sanja Fidler, Associate	*Computer Science, FAS	Computer vision
Professor	NVIDIA	
Raquel Urtasun,	*Computer Science, FAS	Autonomous driving
Professor	Waabi	Ū
	Vector Institute	
Jimmy Ba, Associate	*Computer Science, FAS	Deep learning
Professor	Vector Institute	
Roger Grosse, Associate	*Computer Science, FAS	Neural networks
Professor	Vector Institute	
Animesh Garg, Associate	*Computer Science, FAS	Reinforcement learning,
Professor	Mechanical and Industrial	Robotics
	Engineering, FASE	
	Vector Institute	
	NVIDIA	
Gerald Penn, Professor	* Computer Science, FAS	Spoken language
		processing
Alán Aspuru-Guzik,	* Computer Science, FAS	Machine learning
Professor		
Anthony Bonner,	* Computer Science, FAS	Machine learning
Associate Professor		
Steve Easterbrook,	* Computer Science, FAS	Sustainability informatics
Professor		

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Murat Erdogdu,	* Computer Science, FAS	Machine learning
Assistant Professor		
Nick Koudas, Professor	* Computer Science, FAS	Data management
		systems
Rahul G. Krishnan,	* Computer Science, FAS	Computational medicine
Assistant Professor		
Kyros Kutulakos,	* Computer Science, FAS	Computer vision
Professor		
David Lindell, Assistant	* Computer Science, FAS	Computer graphics
Professor		
Maryam Mehri Dehnavi,	* Computer Science, FAS	Systems
Assistant Professor		
Gennady Pekhimenko,	* Computer Science, FAS	Computer architecture
Assistant Professor		
Toniann Pitassi,	* Computer Science, FAS	Theoretical Computer
Professor		Science
Bianca Schroeder,	* Computer Science, FAS	Computer systems
Professor		
Nisarg Shah, Assistant	* Computer Science, FAS	Theoretical computer
Professor		science
Florian Shkurti, Assistant	* Computer Science, FAS	Robotics, computer
Professor		vision
Nandita Vijaykumar,	* Computer Science, FAS	Computer architecture,
Assistant Professor		
Joseph Jay Williams,	* Computer Science, FAS	Computer science &
Assistant Professor		education
Fahiem Bacchus,	* Computer Science, FAS	Knowledge
Professor		Representation
David Fleet, Professor	* Computer Science, FAS	Computer vision
Kyros Kutulakos,	* Computer Science, FAS	Computer vision
Professor		
Sheila McIlraith,	* Computer Science, FAS	Knowledge
Professor		representation and
		reasoning

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Jessica Burgner-Kahrs,	* Computer Science, FAS	Robotics
Associate Professor		
Ashton Anderson,	* Computer Science, FAS	Computational social
Assistant Professor		science
Parham Arabi, Associate	* Electrical & Computer	Internet Search
Professor	Engineering, FASE	
	Founder & CEO ModiFace Inc	
Ravi Adve, Professor	* Electrical & Computer	Wireless communications
	Engineering, FASE	
Jason Anderson,	* Electrical & Computer	CAD
Professor	Engineering, FASE	
	Chief Scientific Advisor and Co-	
	Founder of LegUp Computing	
	Inc.	
Vaughn Betz, Professor	* Electrical & Computer	CAD
	Engineering, FASE	
	Faculty Affiliate, Vector	
	Institute for Artificial	
	Intelligence	
Paul Chow, Professor	* Electrical & Computer	Computer architectures
	Engineering, FASE	
Stark Draper, Professor	* Electrical & Computer	Information theory
	Engineering, FASE	
Brendan Frey, Professor	* Electrical & Computer	AI biology, medicine and
	Engineering, FASE	healthcare
	CEO Deep Genomics	
Dimitrios Hatzinakos,	* Electrical & Computer	Signal Processing
Professor	Engineering, FASE	
	Co-founder and Director of	
	Identity, Privacy and Security	
	Institute (IPSI)	
Ashish Khisti, Professor	* Electrical & Computer	Communication systems
	Engineering, FASE	

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Deepa Kundur, Professor	* Electrical & Computer	Cybersecurity
and Chaire	Engineering, FASE	
Alberto Leon-Garcia,	* Electrical & Computer	Application platforms
Professor	Engineering, FASE	
	CTO of AcceLight Networks	
Ben Liang, Professor	* Electrical & Computer	Networked systems
	Engineering, FASE	
Xilin Liu, Assistant	* Electrical & Computer	IC and system design
Professor	Engineering, FASE	
Mo Mojahedi, Professor	* Electrical & Computer	Electromagnetics
	Engineering, FASE	
Kostas Plataniotis,	* Electrical & Computer	Image/signal processing
Professor	Engineering, FASE	
Joanathan Rose,	* Electrical & Computer	Applied mental health
Professor	Engineering, FASE	
Ervin Sejdic, Professor	* Electrical & Computer	Biomedical signal
	Engineering, FASE	processing
Ali Sheikholeslami,	* Electrical & Computer	Integrated circuits
Professor	Engineering, FASE	
Shahrokh Valaee,	* Electrical & Computer	Wireless networks
Professor	Engineering, FASE	
Wei Yu, Professor	* Electrical & Computer	Network information
	Engineering, FASE	theory
Shurui Zhou, Assistant	* Electrical & Computer	Software collaboration
Professor	Engineering, FASE	
David Lie, Professor	* Electrical & Computer	Security
	Engineering, FASE	
Andreas Moshovos,	* Electrical & Computer	High-performance
Professor	Engineering, FASE	processor
Nicolas Papernot,	* Electrical & Computer	Security and privacy
Assistant Professor	Engineering, FASE	
	Faculty Member at the Vector	
	Institute	
	Canada CIFAR AI Chair	

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Christopher Lawson,	* Chemical Engineering, FASE	Microbiome engineering
Assistant Professor		
Arun Ramchandran,	* * Chemical Engineering, FASE	Microscale/nanoscale
Associate Professor		interactions
Edgar Acost, Professor	Chemical Engineering, FASE	Colloids and formulation
		engineering
Will Cluett, Professor	* Chemical Engineering, FASE	Process identification
Radhakrishnan	* Chemical Engineering, FASE	Systems biology
Mahadevan, Professor		
Christopher Yip,	* Chemical Engineering, FASE	Molecular self-assembly
Professor and Dean		
Tamer El-Diraby,	* Civil & Mineral Engineering,	Asset management
Associate Professor	FASE	
Sebastian Goodfellow,	* Civil & Mineral Engineering,	Laboratory
Assistant Professor	FASE	experimentation
Kamran Esmaeili,	* Civil & Mineral Engineering,	Mining Engineering
Associate Professor	FASE	
Baher Abdulhai,	* Civil & Mineral Engineering,	Intelligent Transportation
Professor	FASE	Systems
Michael Garton,	* Institute of Biomedical	Computational protein
Assistant Professor	Engineering, FASE	design
Azadeh Kushki, Assistant	* Institute of Biomedical	Pattern analysis and
Professor	Engineering, FASE	machine learning
Babak Taati, Assistant	* University Health Network	Health & assistive
Professor	Institute of Biomedical	technology
	Engineering, FASE	
	Computer Science	
Azadeh Yadollahi,	* University Health Network	Biological Systems
Assistant Professor	Institute of Biomedical	
(cross appointed)	Engineering, FASE	
Rodrigo Fernandez-	Institute of Biomedical	Cell coordination
Gonzalez, Associate	Engineering, FASE	
Professor		

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
José Zariffa, Associate	* Institute of Biomedical	Rehabilitation technology
Professor	Engineering, FASE	
Jonathan Rocheleau	* Institute of Biomedical	Biological Interaction
	Engineering, FASE	
Chirag Variawa, Assistant	* Institute for Studies in	Engineering Education
Professor Teaching	Transdisciplinary Engineering,	
Stream	FASE	
Yu Zou, Assistant	* Materials Science &	Material Engineering
Professor	Engineering, FASE	
Kinnor Chattopadhyay,	* Materials Science &	Material Engineering
Associate Professor and	Engineering, FASE	
Dean's Catalyst Professor		
Chandra Veer Singh,	* Materials Science &	Computational materials
Associate Professor	Engineering, FASE	science
Jason Hattrick-Simpers,	* Materials Science &	Corrosion Resistant
Professor	Engineering, FASE	Complex Alloy Coatings
Jonathan Kelly, Assistant	* University of Toronto	Robotics
Professor	Institute for Aerospace Studies	
	(UTIAS), FASE	
Angela Schoellig,	* University of Toronto	Robotics
Assistant Professor	Institute for Aerospace Studies	
	(UTIAS), FASE	
Tim Barfoot, Associate	* University of Toronto	Robotics
Professor	Institute for Aerospace Studies	
	(UTIAS), FASE	
Steven Waslander,	* University of Toronto	Autonomous driving.
Associate Professor	Institute for Aerospace Studies	
	(UTIAS), FASE	
Dionne M. Aleman,	* Mechanical & Industrial	Medical applications
Associate Professor	Engineering, FASE	
Samin Aref , Assistant	* Mechanical & Industrial	Data science
Professor, Teaching	Engineering, FASE	
Stream		

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Fae Azhari, Assistant	* Mechanical & Industrial	Structural health
Professor	Engineering, FASE	monitoring
Christopher Beck,	* Mechanical & Industrial	Optimization
Professor	Engineering, FASE	
Kamran Behdinan,	* Mechanical & Industrial	Multidisciplinary
Professor	Engineering, FASE	Engineering Design
Beno Benhabib,	* Mechanical & Industrial	Robotics
Professor	Engineering, FASE	
Amy Bilton, Associate	* Mechanical & Industrial	Energy systems
Professor	Engineering, FASE	
Merve Bodur, Assistant	* Mechanical & Industrial	Optimization
Professor	Engineering, FASE	
Michael W. Carter,	* Mechanical & Industrial	Healthcare resourcing
Professor	Engineering, FASE	
Timothy C. Y. Chan,	* Mechanical & Industrial	Operations research
Professor	Engineering, FASE	
Mark H. Chignell,	* Mechanical & Industrial	Human factors
Professor	Engineering, FASE	
Eldan Cohen, Assistant	* Mechanical & Industrial	Machine learning
Professor	Engineering, FASE	
Sinisa Colic, Assistant	* Mechanical & Industrial	Mental Health
Professor, Teaching	Engineering, FASE	
Stream		
Mariano P. Consens,	* Mechanical & Industrial	Data management
Associate Professor	Engineering, FASE	
Eric Diller, Associate	* Mechanical & Industrial	Micro-scale robotics
Professor	Engineering, FASE	
Birsen Donmez,	* Mechanical & Industrial	Human factors
Professor	Engineering, FASE	
Mark S. Fox, Professor	* Mechanical & Industrial	Reasoning
	Engineering, FASE	
Daniel M. Frances,	* Mechanical & Industrial	Simulation techniques
Professor, Teaching	Engineering, FASE	
Stream		

Faculty Name and Rank	Home Unit (*) & Major Affiliations	Area(s) of Specialization
Michael Gruninger,	* Mechanical & Industrial	Ontologies
Professor	Engineering, FASE	
Michael Guerzhoy,	* Mechanical & Industrial	Machine learning
Assistant Professor,	Engineering, FASE	
Teaching Stream		
Greg A. Jamieson,	* Mechanical & Industrial	Human interaction
Professor	Engineering, FASE	automation
Elias B. Khalil, Assistant	* Mechanical & Industrial	Machine learning
Professor	Engineering, FASE	
Roy H. Kwon, Professor	* Mechanical & Industrial	Mathematical
	Engineering, FASE	optimization
Chi-Guhn Lee, Professor	* Mechanical & Industrial	Logistics problems
	Engineering, FASE	
Xinyu Liu, Professor	* Mechanical & Industrial	Microfluidics and lab-on-
	Engineering, FASE	a-chip
Matthew Mackay,	* Mechanical & Industrial	Vision
Associate Professor	Engineering, FASE	
Scott Sanner, Associate	* Mechanical & Industrial	Data Analysis and Al
Professor	Engineering, FASE	
Vahid Sarhangian,	* Mechanical & Industrial	Stochastic modelling
Assistant Professor	Engineering, FASE	
Anthony N. Sinclair,	* Mechanical & Industrial	Material characterization
Professor	Engineering, FASE	
David Sinton, Professor	* Mechanical & Industrial	Energy; environment;
	Engineering, FASE	fluid mechanics
Yu Sun, Professor	* Mechanical & Industrial	Robotics and automation
	Engineering, FASE	
Edmond Young,	* Mechanical & Industrial	Microfluidics
Associate Professor	Engineering, FASE	

Space/Infrastructure

Students in the concentration will be provided office space in the new MScAC space at 700 University Ave, alongside the current MScAC students. IT support is provided by a 0.25 FTE IT staff member in the Department of Computer Science. There is no lab space or specialized

equipment requirement for the program beyond that which is already made available to DCS graduate students.

UTQAP Process

The UTQAP pathway is summarized in the table below.

Steps	Approval		
Development/consultation within unit	Fall 2021 / Winter 2022		
Consultation with Dean's office (and	Winter / Spring 2022 (October 3 rd , 2021)		
VPAP)			
VPAP	January 20, 2022		
Graduate unit approval as appropriate	Fall 2021		
Faculty/divisional council	GCC: February 3rd, 2022		
	A&S Council: February 9, 2022		
Submission to Provost's office	February 9, 2022		
Report to AP&P	May 2022		
Report to Ontario Quality Council	July 2022		

Appendix A: Calendar Entry

2021-22 SGS Calendar: Computer Science

Exported on June 14, 2021. For editing purposes only.

Computer Science: Introduction

Faculty Affiliation

Arts and Science

Degree Programs

Applied Computing MScAC

- Concentrations:
 - Applied Mathematics;
 - Artificial Intelligence;
 - Data Science;
 - Quantum Computing

Computer Science

MSc and PhD

Collaborative Specializations

The following collaborative specializations are available to students in participating degree programs as listed below:

- Genome Biology and Bioinformatics
 - Computer Science, PhD
- Knowledge Media Design
 - Computer Science, MSc, PhD
- Neuroscience
 - Computer Science, MSc, PhD

Overview

Graduate faculty in the Department of Computer Science are interested in a wide range of subjects related to computing, including programming languages and methodology, software engineering, operating systems, compilers, distributed computation, networks, numerical analysis and scientific computing, financial computation, data structures, algorithm design and analysis, computational complexity, cryptography, combinatorics, graph theory, artificial intelligence, neural networks, knowledge representation, computational linguistics, computer vision, robotics, database systems, graphics, animation, interactive computing, and human-computer interaction.

For further details, consult the graduate student handbook prepared by the department and available online.

Contact and Address

MSc and PhD Programs

Web: <u>web.cs.toronto.edu</u> Email: <u>gradapplications@cs.toronto.edu</u> Telephone: (416) 978-8762

Department of Computer Science Graduate Office University of Toronto Bahen Centre for Information Technology 40 St. George Street Toronto, Ontario M5S 2E4 Canada

MScAC Program

Web: <u>mscac.utoronto.ca</u> Email: <u>mscac@cs.toronto.edu</u> Telephone: (416) 978-5180

University of Toronto 700 University Avenue, 9th Floor Toronto, ON M5G 1Z5 Canada

Computer Science: Applied Computing MScAC

Master of Science in Applied Computing

Program Description

The MScAC program is offered as a general Computer Science program (i.e., no concentration) or as a concentration in

- Applied Mathematics, offered jointly by the Department of Computer Science and the Department of Mathematics;
- Artificial Intelligence, offered jointly by the Department of Computer Science, the Department of Statistical Sciences, and the Faculty of Engineering and Applied Science;
- Data Science, offered jointly by the Department of Computer Science and the Department of Statistical Sciences; or
- Quantum Computing, offered jointly by the Department of Computer Science and the Department of Physics.

The Applied Mathematics concentration is offered jointly by the Department of Computer Science and the Department of Mathematics. The Data Science concentration is offered jointly by the Department of Computer Science and the Department of Statistical Sciences. The Quantum Computing concentration is offered jointly by the Department of Computer Science and the Department of Physics. <u>The Artificial</u> <u>Intelligence concentration is offered jointly by the Department of Computer Science and collaborating units: the Department of Statistical Sciences, and the Faculty of <u>Engineering and Applied Science.</u></u>

There is no thesis requirement.

MScAC General Program (No Concentration)

Minimum Admission Requirements

- Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy the Department of Computer Science's additional admission requirements stated below.
- An appropriate bachelor's degree from a recognized university in computer science or a related discipline.
- A standing equivalent to at least B+ in the final year of undergraduate studies.

- Applicants whose primary language is not English and who have graduated from a university where the primary language of instruction is not English must submit results of the Test of English as a Foreign Language (TOEFL) and International English Language Testing System (IELTS) with the following minimum scores:
 - Internet-based TOEFL: 93/120 and 22/30 on the writing and speaking sections.
 - IELTS: an overall score of 7.0, with at least 6.5 for each component.
- If students complete a portion of their degree in English, or part of their degree at another university where English is the language of instruction, applicants must still provide proof of English-language proficiency.
- Three letters of support from faculty and/or employers.
- A statement of purpose explaining the applicant's interest in computer science and objectives for the program.

- **Coursework.** Students must successfully complete a total of **3.0 full-course** equivalents (FCEs) including:
 - 1.0 FCE in required courses: technical communications (CSC2701H) and technical entrepreneurship (CSC2702H).
- An eight-month industrial **internship**, CSC2703H (3.5 FCEs). The internship is coordinated by the department and evaluated on a pass/fail basis.
- There is no thesis requirement.

Program Length

4 sessions full-time (typical registration sequence: F/W/S/F)

Time Limit

3 years full-time

MScAC Program (Artificial Intelligence Concentration)

Minimum Admission Requirements

• Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy the Department of Computer Science's additional admission requirements stated below.

- An appropriate bachelor's degree from a recognized university in a related area such as physics, computer science, mathematics, statistics, engineering, or any discipline where there is a significant quantitative component. The completed bachelor's degree must include significant exposure to computer science or statistics or engineering including coursework in, calculus, linear algebra, probability and statistics, programming languages, and computational methods as well as data structures and algorithms and computer systems.
- A minimum average grade of B+ over the final two years of undergraduate studies. A standing equivalent to at least B+ in the final year of undergraduate studies.
- Applicants whose primary language is not English and who have graduated from a university where the primary language of instruction is not English must submit results of the Test of English as a Foreign Language (TOEFL) and International English Language Testing System (IELTS) with the following minimum scores: Internet-based TOEFL: 93/120 and 22/30 on the writing and speaking sections. IELTS: an overall score of 7.0, with at least 6.5 for each component.
- If students complete a portion of their degree in English, or part of their degree at another university where English is the language of instruction, applicants must still provide proof of English-language proficiency.
- Three letters of reference from faculty and/or employers, with preference for at least one such letter from a faculty member in Artificial Intelligence.
- Answers to four questions explaining applicant's interest in Artificial Intelligence and objectives for the program.
- Applicants must indicate a preference for a concentration in AI in their application. Admission to the AI concentration is on a competitive basis.
 Students admitted to the MScAC program are not automatically admitted to the AI concentration upon request.

Coursework. Students must successfully complete a total of 3.0 full-course
 equivalents (FCEs) as follows:

1.5 FCEs of coursework in the area of Artificial Intelligence

<u>1.0 FCE selected from the core list of AI courses (see list below) from at least two different research areas</u>

• 0.5 FCE selected from additional AI courses outside the core list.

1.0 FCE in required courses:

- CSC2701H Communication for Computer Scientists (0.5 FCE)
- <u>CSC2702H Technical Entrepreneurship (0.5 FCE)</u>

Remaining 0.5 FCE of coursework will be chosen from outside of AI.

- Course selections should be made in consultation with and approved by the Program Director. Appropriate substitutions may be possible with approval.
- A maximum of 1.0 FCE may be chosen from outside the Computer Science (CSC course designator) graduate course listing.
- An eight-month industrial **internship**, CSC2703H (3.5 FCEs). The internship is coordinated by the department and evaluated on a pass/fail basis.

Artificial Intelligence Core Courses

Course Code	Title		
<u>CSC2515H</u> *	Introduction to Machine Learning (exclusion: ECE 1513H)		
ECE1513H*	Introduction to Machine Learning (exclusion: CSC 2515H)		
<u>CSC2516H</u> **	Neural Networks and Deep Learning (exclusion: MIE 1517H)		
MIE1517H**	Introduction to Deep Learning (exclusion: CSC 2516H)		
<u>CSC2502H</u>	Knowledge Representation & Reasoning		
<u>CSC2533H</u>	Foundations of Knowledge Representation		
<u>CSC2503H</u>	Foundations of Computer Vision		
<u>ECE1512H</u>	Digital Image Processing and Applications		
<u>CSC2501H</u>	Computational Linguistics		
<u>CSC2511H</u>	Natural Language Computing		
<u>AER1513H</u>	State Estimation for Aerospace Vehicles (State Estimation for Robotics)		
<u>AER1517H</u>	Control for Robotics		
<u>CSC2630H</u>	Introduction to Mobile Robotics (pending governance approval – April 2022)		

*different courses with same title, offered by different faculties.

**different courses with similar titles, offered by different faculties.

MScAC Program (Applied Mathematics Concentration)

Minimum Admission Requirements

 Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy the Department of Computer Science's additional admission requirements stated below.

- An appropriate bachelor's degree from a recognized university in a related area such as applied mathematics, mathematics, physics, computational mathematics, statistics, computer science, or any discipline where there is a significant quantitative and/or mathematical component. The completed bachelor's degree must include significant exposure to advanced mathematics, statistics, and computer science, including coursework in advanced and multivariate calculus (preferably analysis), linear algebra, probability and statistics, programming languages, and general computational methods.
- A standing equivalent to at least B+ in the final year of undergraduate studies.
- Applicants whose primary language is not English and who have graduated from a university where the primary language of instruction is not English must submit results of the Test of English as a Foreign Language (TOEFL) and International English Language Testing System (IELTS) with the following minimum scores:
 - Internet-based TOEFL: 93/120 and 22/30 on the writing and speaking sections.
 - IELTS: an overall score of 7.0, with at least 6.5 for each component.
- If students complete a portion of their degree in English, or part of their degree at another university where English is the language of instruction, applicants must still provide proof of English-language proficiency.
- Three letters of reference from faculty and/or employers, with preference for at least one such letter from a faculty member in Mathematics or Applied Mathematics.
- A statement of purpose explaining the applicant's interest in applied mathematics and objectives for the program.
- Applicants must indicate a preference for the concentration in Applied Mathematics in their application. Admission is competitive, and students who are admitted into the MScAc program are not automatically admitted to this concentration upon request.
- There is no thesis requirement.

• Coursework. Completion of 3.0 full-course equivalents (FCEs) including:

- 1.0 FCE chosen from the MAT 1000-level courses or higher. This may include courses cross-listed as APM400 level.
- 1.0 FCE chosen from the Computer Science (CSC course designator) graduate course listings.
- 1.0 FCE in required courses:

CSC2701H Communication for Computer Scientists (0.5 FCE) and CSC2702H Technical Entrepreneurship (0.5 FCE).

- Course selections should be made in consultation with the Program Director.
- An eight-month industrial **internship**, CSC2703H (3.5 FCEs). The internship is coordinated by the department and evaluated on a pass/fail basis.

Program Length

4 sessions full-time (typical registration sequence: F/W/S/F)

Time Limit

3 years full-time

MScAC Program (Data Science Concentration)

Minimum Admission Requirements

- Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy the Department of Computer Science's additional admission requirements stated below.
- An appropriate bachelor's degree from a recognized university in a related area such as statistics, computer science, mathematics, or any discipline where there is a significant quantitative component. The completed bachelor's degree must include significant exposure to statistics, computer science, and mathematics, including coursework in advanced calculus, linear algebra, probability and statistics, programming languages, and computational methods.
- A standing equivalent to at least B+ in the final year of undergraduate studies.
- Applicants whose primary language is not English and who have graduated from a university where the primary language of instruction is not English must submit results of the Test of English as a Foreign Language (TOEFL) and International English Language Testing System (IELTS) with the following minimum scores:
 - Internet-based TOEFL: 93/120 and 22/30 on the writing and speaking sections.
 - IELTS: an overall score of 7.0, with at least 6.5 for each component.
- If students complete a portion of their degree in English, or part of their degree at another university where English is the language of instruction, applicants must still provide proof of English-language proficiency.
- Three letters of support from faculty and/or employers.
- A statement of purpose explaining the applicant's interest in data science and objectives for the program.
- Applicants must indicate a preference for the concentration in Data Science in their application. Admission is competitive, and students who are admitted to the MScAC program are not automatically admitted to this concentration upon request.

Program Requirements

• Coursework. Completion of 3.0 full-course equivalents (FCEs) including:

- 1.0 FCE chosen from the STA 2000-level courses or higher. This may include a maximum of 0.5 FCE chosen from the STA 4500-level of sixweek modular courses (0.25 FCE each).
- 1.0 FCE chosen from the Computer Science (CSC course designator) graduate course listings.
- 1.0 FCE in required courses:

CSC2701H Communication for Computer Scientists (0.5 FCE) and CSC2702H Technical Entrepreneurship (0.5 FCE).

- Course selections should be made in consultation with the Program Director.
- An eight-month industrial **internship**, CSC2703H (3.5 FCEs). The internship is coordinated by the department and evaluated on a pass/fail basis.
- There is no thesis requirement.

Program Length

4 sessions full-time (typical registration sequence: F/W/S/F)

Time Limit

3 years full-time

MScAC Program (Quantum Computing Concentration)

Minimum Admission Requirements

- Applicants are admitted under the General Regulations of the School of Graduate Studies. Applicants must also satisfy the Department of Computer Science's additional admission requirements stated below.
- An appropriate bachelor's degree from a recognized university in a related area such as physics, computer science, mathematics, or any discipline where there is a significant quantitative component. The completed bachelor's degree must include significant exposure to physics, computer science, and mathematics, including coursework in advanced quantum mechanics, multivariate calculus, linear algebra, probability and statistics, programming languages, and computational methods.
- A standing equivalent to at least B+ in the final year of undergraduate studies.

- Applicants whose primary language is not English and who have graduated from a university where the primary language of instruction is not English must submit results of the Test of English as a Foreign Language (TOEFL) and International English Language Testing System (IELTS) with the following minimum scores:
 - Internet-based TOEFL: 93/120 and 22/30 on the writing and speaking sections.
 - IELTS: an overall score of 7.0, with at least 6.5 for each component.
- If students complete a portion of their degree in English, or part of their degree at another university where English is the language of instruction, applicants must still provide proof of English-language proficiency.
- Three letters of reference from faculty and/or employers, with preference for at least one such letter from a faculty member in Physics.
- A statement of purpose explaining the applicant's interest in quantum computing and objectives for the program.
- Applicants must indicate a preference for the concentration in Quantum Computing in their application. Admission is competitive, and students who are admitted to the MScAC program are not automatically admitted to this concentration upon request.

- Coursework. Completion of 3.0 full-course equivalents (FCEs) as follows:
 - 1.0 FCE chosen from the Physics (PHY course designator) graduate course listings. Of eligible courses, the following are examples that are particularly relevant to the Quantum Computing concentration:

PHY1500H Statistical Mechanics (0.5 FCE) PHY1520H Quantum Mechanics (0.5 FCE) PHY1610H Scientific Computing for Physicists (0.5 FCE) PHY2203H Quantum Optics I (0.5 FCE) PHY2204H Quantum Optics II (0.5 FCE) PHY2211H Quantum Information Theory (0.5 FCE) PHY2212H Entanglement Physics (0.5 FCE)

 1.0 FCE chosen from the Computer Science (CSC course designator) graduate course listings. Of eligible courses, the following are examples that are particularly relevant to the Quantum Computing concentration:
 CSC2305H Numerical Methods for Optimization Problems (0.5 FCE) CSC2414H Topics in Applied Discrete Mathematics (0.5 FCE) CSC2421H Topics in Algorithms (0.5 FCE) CSC2451H Quantum Computing, Foundations to Frontier (0.5 FCE)

• 1.0 FCE in required courses:

CSC2701H Communication for Computer Scientists (0.5 FCE) CSC2702H Technical Entrepreneurship (0.5 FCE)

- Course selections should be made in consultation with the Program Director. Appropriate substitutions may be possible with approval.
- An eight-month industrial **internship**, CSC2703H (3.5 FCEs). The internship is coordinated by the department and evaluated on a pass/fail basis.
- There is no thesis requirement.

Program Length

4 sessions full-time (typical registration sequence: F/W/S/F)

Time Limit

3 years full-time

Computer Science: Computer Science MScAC, MSc, PhD Courses

Not all courses are offered every year. Please consult the department for course offerings.

CSC2104H	Formal Methods of Program Design			
CSC2107H	Compilers and Interpreters			
CSC2108H	Automated Verification			
CSC2125H	Algorithmic Program Verification			
CSC2206H	Computer Systems Modelling			
CSC2208H	Advanced Operating Systems			
CSC2209H	Computer Networks			
CSC2221H	Introduction to Distributed Computing			

CSC2222H	Applications of Parallel and Distributed Computing				
CSC2224H	Parallel Computer Architecture and Programming				
CSC2226H	Topics in Verification				
CSC2227H	Topics in the Design and Implementation of Operating Systems				
CSC2228H	Topics in Mobile, Pervasive, and Cloud Computing				
CSC2231H	Topics in Computer Systems				
CSC2233H	Topics in Storage Systems				
CSC2305H	Numerical Methods for Optimization Problems				
CSC2306H	High Performance Scientific Computing				
CSC2310H	Computational Methods for Partial Differential Equations				
CSC2321H	Matrix Calculations				
CSC2326H	Topics in Numerical Analysis				
CSC2401H	Introduction to Computational Complexity				
CSC2404H	Computability and Logic				
CSC2405H	Automata Theory				
CSC2410H	Introduction to Graph Theory				
CSC2412H	Algorithms for Private Data Analysis (Prerequisite: CSC 373 or equivalent, or permission of the instructor.)				
CSC2414H	Topics in Applied Discrete Mathematics				
CSC2415H	Advanced Topics in the Theory of Distributed Computing				
CSC2416H	Machine Learning Theory				
CSC2417H	Algorithms for Genome Sequence Analysis				
CSC2419H	Topics in Cryptography				
CSC2420H	Algorithm Design, Analysis, and Theory				

CSC2421H	Topics in Algorithms				
CSC2426H	Fundamentals of Cryptography				
CSC2427H	Topics in Graph Theory				
CSC2429H	Topics in the Theory of Computation				
CSC2431H	Topics in Computational Molecular Biology				
CSC2451H	Quantum Computing, Foundations to Frontier (Exclusion: MAT1751H Quantum Computing, Foundations to Frontier.)				
CSC2501H	Computational Linguistics				
CSC2502H	Knowledge Representation and Reasoning				
CSC2503H	Foundations of Computer Vision				
CSC2504H	Computer Graphics				
CSC2506H	Probabilistic Learning and Reasoning				
CSC2508H	Advanced Management Systems				
CSC2510H	Topics in Information Systems				
CSC2511H	Natural Language Computing				
CSC2512H	Constraint Satisfaction Problems				
CSC2513H	Critical Thinking for Human Computer Interaction (Prerequisite: CSC 318 or equivalent, or permission of the instructor.)				
CSC2514H	Human-Computer Interaction				
CSC2515H	Introduction to Machine Learning				
CSC2516H	Neural Networks and Deep Learning				
CSC2518H	Spoken Language Processing				
CSC2520H	Geometry Processing				
CSC2521H	Topics in Computer Graphics				

CSC2523H	Object Modelling and Recognition			
CSC2524H	Topics in Interactive Computing			
CSC2525H	Research Topics in Database Management			
CSC2526H	HCI: Topics in Ubiquitous Computing			
CSC2527H	The Business of Software			
CSC2528H	Advanced Computational Linguistics			
CSC2530H	Computer Vision for Advanced Digital Photography			
CSC2532H	Statistical Learning Theory (Prerequisite: CSC2515H.)			
CSC2533H	Foundations of Knowledge Representation			
CSC2534H	Decision Making Under Uncertainty			
CSC2536H	Topics in Computer Science and Education			
CSC2537H	Information Visualization			
СSC2539Н	Topics in Computer Vision			
CSC2540H	Computational Cognitive Models of Language			
CSC2541H	Topics in Machine Learning			
CSC2542H	Topics in Knowledge Representation and Reasoning			
CSC2546H	Computational Neuroscience			
CSC2547H	Current Algorithms and Techniques in Machine Learning			
CSC2548H	Machine Learning in Computer Vision			
CSC2549H	Physics-Based Animation			
CSC2552H	Topics in Computational Social Science			
CSC2556H	Algorithms for Collective Decision Making			
CSC2558H	Topics in Multidisciplinary HCI			
CSC2600H	Topics in Computer Science			

CSC2604H	Topics in Human-Centred and Interdisciplinary Computing		
CSC2606H	Introduction to Continuum Robotics (Prerequisite: Introduction to Robotics; e.g, CSC376 offered at UTM or AER525. Exclusion: CSC476 offered at UTM.)		
CSC2611H	Computational Models of Semantic Change		
CSC2612H	Computing and Global Development (Prerequisite: CSC 318 or equivalent, or permission of the instructor.)		
CSC2621H	Topics in Robotics (Prerequisite: CSC411H or CSC2515H or ECE521H.)		
CSC2626H	Imitation Learning for Robotics (Prerequisite: CSC411/2515 Machine Learning and Data Mining or ECE521 Inference Algorithms and Machine Learning or equivalent.)		
CSC2699H	Special Reading Course in Computer Science		
CSC2701H	Communication for Computer Scientists		
CSC2702H	Technical Entrepreneurship		
CSC2703H	MScAC Internship		
CSC2720H	Systems Thinking for Global Problems		
CSC4000Y	MSc Research Project in Computer Science		
ECE1785H	Empirical Software Engineering		

Appendix B: List of Courses associated with the new concentration

All students in the MScAC, including students in the new concentration, receive individualized advising to ensure that they select courses <u>http://www.cs.toronto.edu/dcs/graddocs/Grad_CourseDescriptions_ResearchArea.pdf</u> that a) meet the program requirements, including any requirements specific to the

concentration; b) have sufficient academic preparation for each course; and c) support their professional goals.

Students pursuing the new concentration in AI may select graduate-level courses from the participating departments, in compliance with the requirements listed in the SGS calendar, and subject to approval of the program director.

For these graduate courses, the content can change yearly depending on the faculty member delivering the course, therefore the syllabus must be reviewed for each non-CS course every single year and revise the classification and permission for whether MScAC students can take them accordingly. Permission is granted based on technical content within the course.

Courses related to or in AI

Introductory/Fundamental Courses:

Course			Research	
Code	Title	Methodology	Area	Exclusion
	Introduction			
	to Machine	2 Cont		
CSC2515	Learning	Models	12 ML	ECE1513
	Introduction			
	to Machine	2 Cont		
ECE1513	Learning	Models	12 ML	CSC2515
	Neural			
	Networks			
	and Deep	2 Cont		
CSC2516	Learning	Models	12 ML	MIE1517
	Introduction			
	to Deep	2 Cont		
MIE1517	Learning	Models	12 ML	CSC2516
	Knowledge			
	Representat			
	ion &			
CSC2502	Reasoning	1 Disc Models	11 KR	
	Foundations			
	of			
	Knowledge			
	Representat			
CSC2533	ion	1 Disc Models	11 KR	

(captured in calendar copy in Appendix A, as well).

	Foundations of Computer	2 Cont		
CSC2503	Vision	Models	7 CV	
	Digital			
	Image Processing			
	and	2 Cont		
ECE1512H	Applications	Models	7 CV	
		4 Human-		
	Computatio nal	Centred & Interdisciplina		
CSC2501	Linguistics	ry	4 CL	
		4 Human-		
	Natural	Centred &		
	Language	Interdisciplina		*new cross-listed
CSC2511	Computing	ry	4 CL	course
	State Estimation			
	for			
	Aerospace			
	Vehicles			
	(State			
	Estimation			
AED1E12	for Dobatics)	2 Cont	16 Debeties	
AER1513	Robotics)	Models	Robotics	
AER1517	Control for Robotics	2 Cont Models	16 Robotics	

*Footnote: CSC2515 and ECE1513 are different courses from different faculties, the content and instructors are different

Additional courses students may choose to take to meet their AI course requirements are available. Other courses may be eligible. Please consult with the program director for approval.