Loading Events

I Build AI’s Because I Don’t Trust Myself

Jason Hattrick-Simpers

Professor Jason Hattrick-Simpers
Department of Material Science & Engineering
University of Toronto

Abstract:

The past few years have been marked by a literal exponential increase in the number of publications with the words “machine learning,” “artificial intelligence,” and “deep learning” in their titles. These tools now pervade materials science workflows and have been integrated with experimental/computational automation to form autonomous research agents, capable of planning, executing, and analyzing entire scientific campaigns. Lurking beneath the surface truly amazing accomplishments are serious questions around trust, bias, reproducibility, and equity which will ultimately determine the overall adoption of AI and autonomy by the broader community. Here, I will speak to recent work done by our group to systematically (1) remove human bias from experimental data analysis, (2) identify and actively remediate bias in large datasets , and (3) foster and promote a community of equity and reproducibility within the materials AI sub-domain. Specific case studies will center around standard electrochemical impedance spectroscopy analysis, building stability model predictions for complex alloys from large theoretical datasets, and maximizing the amount of information extracted from imaging techniques.

Bio:

Jason Hattrick-Simpers is a Professor in the Department of Materials Science and Engineering, University of Toronto, and a Research Scientist at CanmetMATERIALS. He graduated with a B.S. in Mathematics and a B.S. in Physics from Rowan University and a Ph.D. in Materials Science and Engineering from the University of Maryland. His research interests focus on using AI and experimental automation to discover new functional alloys and oxides that can survive in extreme environments and materials for energy conversion and storage.

Microsoft Teams meeting:

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 296 827 043 532
Passcode: mRNTRW

Download Teams | Join on the web

Or call in (audio only)

+1 647-794-1609,,176390674#   Canada, Toronto

Phone Conference ID: 176 390 674#

Find a local number | Reset PIN

Learn More | Meeting options

I Build AI’s Because I Don’t Trust Myself

Event Details

Venue

March 30, 2023 @ 10:30 am - 11:30 am

Venue

WB215/Teams

Jason Hattrick-Simpers

Professor Jason Hattrick-Simpers
Department of Material Science & Engineering
University of Toronto

Abstract:

The past few years have been marked by a literal exponential increase in the number of publications with the words “machine learning,” “artificial intelligence,” and “deep learning” in their titles. These tools now pervade materials science workflows and have been integrated with experimental/computational automation to form autonomous research agents, capable of planning, executing, and analyzing entire scientific campaigns. Lurking beneath the surface truly amazing accomplishments are serious questions around trust, bias, reproducibility, and equity which will ultimately determine the overall adoption of AI and autonomy by the broader community. Here, I will speak to recent work done by our group to systematically (1) remove human bias from experimental data analysis, (2) identify and actively remediate bias in large datasets , and (3) foster and promote a community of equity and reproducibility within the materials AI sub-domain. Specific case studies will center around standard electrochemical impedance spectroscopy analysis, building stability model predictions for complex alloys from large theoretical datasets, and maximizing the amount of information extracted from imaging techniques.

Bio:

Jason Hattrick-Simpers is a Professor in the Department of Materials Science and Engineering, University of Toronto, and a Research Scientist at CanmetMATERIALS. He graduated with a B.S. in Mathematics and a B.S. in Physics from Rowan University and a Ph.D. in Materials Science and Engineering from the University of Maryland. His research interests focus on using AI and experimental automation to discover new functional alloys and oxides that can survive in extreme environments and materials for energy conversion and storage.

Microsoft Teams meeting:

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 296 827 043 532
Passcode: mRNTRW

Download Teams | Join on the web

Or call in (audio only)

+1 647-794-1609,,176390674#   Canada, Toronto

Phone Conference ID: 176 390 674#

Find a local number | Reset PIN

Learn More | Meeting options

Details

Date:
March 30, 2023
Time:
10:30 am - 11:30 am
Event Category:
Website:
https://chem-eng.utoronto.ca/event/i-build-ais-because-i-dont-trust-myself/

Upcoming Events

All
  • All
  • Alumni events
  • Anti-Racism and Cultural Diversity Office events
  • Convocation events
  • Faculty & staff events
  • Info sessions
  • Lectures, seminars and workshops
  • Socials
  • U of T holidays & closures

Presidential Day

Mon June 30, 2025
The university will be closed.

Canada Day

Tue July 1, 2025
The university will be closed.  Wishing you a happy long weekend!

Academic/Student Registration – 2025 CRAFT Microfluidics Professional Course

Wed July 9, 2025 @ 8:30 am - Fri July 11, 2025 @ 5:30 pm
The 2025 Microfluidics Professional Course is designed as a crash course for industrial researchers with little or no experience in the microfluidics field. It is open to international attendees and will include...

2025 Toronto Robotics Conference

Tue July 15, 2025 @ 9:00 am - Wed July 16, 2025 @ 4:00 pm
Join the University of Toronto Robotics Institute’s expert network at the University of Toronto Mississauga on July 15 and 16 for a two-day, dual-track showcase of the latest AI-robotics research...