Loading Events

In-Person: MIE Distinguished Seminar Series with Professor Michael McAlpine: “3D Printing Active Electronic Devices”

Interested members of the U of T community who would like to attend the seminars can email Kendra Hunter at hunter@mie.utoronto.ca

Professor Michael McAlpineProfessor Michael McAlpine Headshot
University of Minnesota (Department of Mechanical Engineering)

3D Printing Active Electronic Devices

Abstract
The ability to three-dimensionally pattern semiconducting electronic and optoelectronic materials could provide a transformative approach to creating active electronic devices without the need for a cleanroom or conventional microfabrication facilities. This could enable the generation of active electronics on-the-fly, using only source inks and a portable 3D printer to realize electronics anywhere, anytime, including directly on the body. Indeed, interfacing active devices with biology in 3D could impact a variety of fields, including biomedical devices, wearable electronics, bioelectronics, smart prosthetics, and human-machine interfaces. Developing the ability to 3D print various classes of materials possessing distinct properties will enable the freeform generation of active electronics in unique functional, interwoven architectures. Yet, achieving seamless integration of these diverse materials via 3D printing is a significant challenge which requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. We will present a strategy for three-dimensionally integrating diverse classes of materials using a custom-built 3D printer to create fully 3D printed device components built around active electronics. As a proof of concept, we have 3D printed quantum dot-based light-emitting diodes (QD-LEDs), polymer-based photodiodes on curvilinear surfaces, flexible displays, and skin-interfaced hybrid devices. These results represent a series of critical steps toward the 3D printing of high performance, active electronic materials and devices.

Biography
Michael C. McAlpine is the Kuhrmeyer Family Chair Professor of Mechanical Engineering at the University of Minnesota. He received a B.S. (2000) in Chemistry with honors from Brown University, and a Ph.D. (2006) in Chemistry from Harvard University. His research interests are focused on 3D printing functional materials & devices for bioelectronic applications, with recent breakthroughs in 3D printed OLED displays and 3D printed bionic eyes (one of National Geographic’s 12 Innovations that will Revolutionize the Future of Medicine). He has received several awards for this work, including the Presidential Early Career Award for Scientists and Engineers (PECASE), and the National Institutes of Health Director’s New Innovator Award.


MIE’s Distinguished Seminar Series features top international researchers and leading experts across major areas of Mechanical Engineering and Industrial Engineering. The speakers present about their latest research and offer their perspectives on the current state of their field. The seminars are part of the program requirements for MIE Master of Applied Science and PhD students. The Distinguished Seminar Series is coordinated for 2022-2023 by Assistant Professor Merve Bodur.

View all upcoming MIE Distinguished Seminars.

In-Person: MIE Distinguished Seminar Series with Professor Michael McAlpine: “3D Printing Active Electronic Devices”

Event Details

Venue

March 3, 2023 @ 2:00 pm - 3:00 pm

Venue

Mechanical Engineering Building, MC102, 5 King’s College Road, Toronto, Canada

Interested members of the U of T community who would like to attend the seminars can email Kendra Hunter at hunter@mie.utoronto.ca

Professor Michael McAlpineProfessor Michael McAlpine Headshot
University of Minnesota (Department of Mechanical Engineering)

3D Printing Active Electronic Devices

Abstract
The ability to three-dimensionally pattern semiconducting electronic and optoelectronic materials could provide a transformative approach to creating active electronic devices without the need for a cleanroom or conventional microfabrication facilities. This could enable the generation of active electronics on-the-fly, using only source inks and a portable 3D printer to realize electronics anywhere, anytime, including directly on the body. Indeed, interfacing active devices with biology in 3D could impact a variety of fields, including biomedical devices, wearable electronics, bioelectronics, smart prosthetics, and human-machine interfaces. Developing the ability to 3D print various classes of materials possessing distinct properties will enable the freeform generation of active electronics in unique functional, interwoven architectures. Yet, achieving seamless integration of these diverse materials via 3D printing is a significant challenge which requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. We will present a strategy for three-dimensionally integrating diverse classes of materials using a custom-built 3D printer to create fully 3D printed device components built around active electronics. As a proof of concept, we have 3D printed quantum dot-based light-emitting diodes (QD-LEDs), polymer-based photodiodes on curvilinear surfaces, flexible displays, and skin-interfaced hybrid devices. These results represent a series of critical steps toward the 3D printing of high performance, active electronic materials and devices.

Biography
Michael C. McAlpine is the Kuhrmeyer Family Chair Professor of Mechanical Engineering at the University of Minnesota. He received a B.S. (2000) in Chemistry with honors from Brown University, and a Ph.D. (2006) in Chemistry from Harvard University. His research interests are focused on 3D printing functional materials & devices for bioelectronic applications, with recent breakthroughs in 3D printed OLED displays and 3D printed bionic eyes (one of National Geographic’s 12 Innovations that will Revolutionize the Future of Medicine). He has received several awards for this work, including the Presidential Early Career Award for Scientists and Engineers (PECASE), and the National Institutes of Health Director’s New Innovator Award.


MIE’s Distinguished Seminar Series features top international researchers and leading experts across major areas of Mechanical Engineering and Industrial Engineering. The speakers present about their latest research and offer their perspectives on the current state of their field. The seminars are part of the program requirements for MIE Master of Applied Science and PhD students. The Distinguished Seminar Series is coordinated for 2022-2023 by Assistant Professor Merve Bodur.

View all upcoming MIE Distinguished Seminars.

Upcoming Events

All
  • All
  • Alumni events
  • Anti-Racism and Cultural Diversity Office events
  • Convocation events
  • Faculty & staff events
  • Holidays
  • Info sessions
  • Lectures, seminars and workshops
  • Socials
  • U of T holidays & closures

Academic/Student Registration – 2025 CRAFT Microfluidics Professional Course

Wed July 9, 2025 @ 8:30 am - Fri July 11, 2025 @ 5:30 pm
The 2025 Microfluidics Professional Course is designed as a crash course for industrial researchers with little or no experience in the microfluidics field. It is open to international attendees and will include...

2025 Toronto Robotics Conference

Tue July 15, 2025 @ 9:00 am - Wed July 16, 2025 @ 4:00 pm
Join the University of Toronto Robotics Institute’s expert network at the University of Toronto Mississauga on July 15 and 16 for a two-day, dual-track showcase of the latest AI-robotics research...

U of T Alumni x Featherstone Estate Winery Event

Thu July 17, 2025 @ 5:00 pm - 9:00 pm
  Located in the beautiful setting of Niagara wine country, Featherstone Estate Winery—owned by close friends of the university Rayla and George Myhal (U of T Engineering)—will open its doors for an unforgettable alumni celebration.  ...

Presidential Day

Fri August 1, 2025
The university will be closed.